Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Super-Resolution Face Recognition: An Approach Using Generative Adversarial Networks and Joint-Learn

dc.contributor.authorde Oliveira, Rafael Augusto
dc.contributor.authorScheeren, Michel Hanzen
dc.contributor.authorRodrigues, Pedro João Soares
dc.contributor.authorJunior, Arnaldo Candido [UNESP]
dc.contributor.authorde Paula Filho, Pedro Luiz
dc.contributor.institutionInstituto Politécnico de Bragança
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T12:51:25Z
dc.date.available2023-07-29T12:51:25Z
dc.date.issued2022-01-01
dc.description.abstractFace Recognition is a challenging task present in different applications and systems. An existing challenge is to recognize faces when imaging conditions are adverse, for example when images come from low-quality cameras or when the subject and the camera are far apart, thus impacting the accuracy of these recognizing systems. Super-Resolution techniques can be used to improve both image resolution and quality, hopefully improving the accuracy of the face recognition task. Among these techniques, the actual state-of-the-art uses Generative Adversarial Networks. One promising option is to train Super-Resolution and Face Recognition as one single network, conducting the network to learn super resolution features that will improve its capability when recognizing faces. In the present work, we trained a super resolution face recognition model using a jointly-learn approach, combining a generative network for super resolution and a ResNet50 for Face Recognition. The model was trained with a discriminator network, following the generative adversarial training. The images generated by the network were convincing, but we could not converge the face recognition model. We hope that our contributions could help future works on this topic. Code is publicly available at https://github.com/OliRafa/SRFR-GAN.en
dc.description.affiliationInstituto Politécnico de Bragança
dc.description.affiliationUniversidade Tecnológica Federal do Paraná
dc.description.affiliationUniversidade Estadual Paulista
dc.description.affiliationUnespUniversidade Estadual Paulista
dc.format.extent747-762
dc.identifierhttp://dx.doi.org/10.1007/978-3-031-23236-7_51
dc.identifier.citationCommunications in Computer and Information Science, v. 1754 CCIS, p. 747-762.
dc.identifier.doi10.1007/978-3-031-23236-7_51
dc.identifier.issn1865-0937
dc.identifier.issn1865-0929
dc.identifier.scopus2-s2.0-85147987485
dc.identifier.urihttp://hdl.handle.net/11449/246822
dc.language.isoeng
dc.relation.ispartofCommunications in Computer and Information Science
dc.sourceScopus
dc.subjectFace Recognition
dc.subjectGenerative Adversarial Networks
dc.subjectMachine learning
dc.subjectSuper-resolution
dc.titleSuper-Resolution Face Recognition: An Approach Using Generative Adversarial Networks and Joint-Learnen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções