Modular Hyperthermostable Bacterial Endo-beta-1, 4-Mannanase: Molecular Shape, Flexibility and Temperature-Dependent Conformational Changes

dc.contributor.authorSilva, Viviam M. da
dc.contributor.authorColussi, Francieli
dc.contributor.authorNeto, Mario de Oliveira [UNESP]
dc.contributor.authorBraz, Antonio S. K.
dc.contributor.authorSquina, Fabio M.
dc.contributor.authorOliveira, Cristiano L. P.
dc.contributor.authorGarcia, Wanius
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCtr Nacl Pesquisa Energia & Mat
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2014-12-03T13:08:47Z
dc.date.available2014-12-03T13:08:47Z
dc.date.issued2014-03-26
dc.description.abstractEndo-beta-1,4-mannanase from Thermotoga petrophila (TpMan) is a hyperthermostable enzyme that catalyzes the hydrolysis of beta-1,4-mannoside linkages in various mannan-containing polysaccharides. A recent study reported that TpMan is composed of a GH5 catalytic domain joined by a linker to a carbohydrate-binding domain. However, at this moment, there is no three-dimensional structure determined for TpMan. Little is known about the conformation of the TpMan as well as the role of the length and flexibility of the linker on the spatial arrangement of the constitutive domains. In this study, we report the first structural characterization of the entire TpMan by small-angle X-ray scattering combined with the three-dimensional structures of the individual domains in order to shed light on the low-resolution model, overall dimensions, and flexibility of this modular enzyme at different temperatures. The results are consistent with a linker with a compact structure and that occupies a small volume with respect to its large number of amino acids. Furthermore, at 20 degrees C the results are consistent with a model where TpMan is a molecule composed of three distinct domains and that presents some level of molecular flexibility in solution. Even though the full enzyme has some degree of molecular flexibility, there might be a preferable conformation, which could be described by the rigid-body modeling procedure. Finally, the results indicate that TpMan undergoes a temperature-driven transition between conformational states without a significant disruption of its secondary structure. Our results suggest that the linker can optimize the geometry between the other two domains with respect to the substrate at high temperatures. These studies should provide a useful basis for future biophysical studies of entire TpMan.en
dc.description.affiliationUniv Fed ABC UFABC, Ctr Ciencias Nat & Humanas, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Biociencias, Dept Fis & Biofis, Sao Paulo, Brazil
dc.description.affiliationCtr Nacl Pesquisa Energia & Mat, Lab Nacl Ciencia & Tecnol Bioetanol, Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Biociencias, Dept Fis & Biofis, Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 2012/21054-9
dc.description.sponsorshipIdCNPq: 478900/2012-0
dc.description.sponsorshipIdCNPq: 2012/03503-0
dc.description.sponsorshipIdCNPq: 501037/2012-8
dc.format.extent14
dc.identifierhttp://dx.doi.org/10.1371/journal.pone.0092996
dc.identifier.citationPlos One. San Francisco: Public Library Science, v. 9, n. 3, 14 p., 2014.
dc.identifier.doi10.1371/journal.pone.0092996
dc.identifier.fileWOS000333677000097.pdf
dc.identifier.issn1932-6203
dc.identifier.lattes8213371495151651
dc.identifier.urihttp://hdl.handle.net/11449/111583
dc.identifier.wosWOS:000333677000097
dc.language.isoeng
dc.publisherPublic Library Science
dc.relation.ispartofPLOS ONE
dc.relation.ispartofjcr2.766
dc.relation.ispartofsjr1,164
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleModular Hyperthermostable Bacterial Endo-beta-1, 4-Mannanase: Molecular Shape, Flexibility and Temperature-Dependent Conformational Changesen
dc.typeArtigo
dcterms.rightsHolderPublic Library Science
unesp.author.lattes8213371495151651
unesp.author.orcid0000-0002-3426-6507[6]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000333677000097.pdf
Tamanho:
1.57 MB
Formato:
Adobe Portable Document Format