Multi-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problem

dc.contributor.authorToledo, C. F. M.
dc.contributor.authorFranca, P. M. [UNESP]
dc.contributor.authorMorabito, R.
dc.contributor.authorKimms, A.
dc.contributor.institutionUniv Duisburg Essen
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-05-20T13:23:33Z
dc.date.available2014-05-20T13:23:33Z
dc.date.issued2009-01-01
dc.description.abstractThis paper introduces an evolutionary algorithm as a procedure to solve the Synchronized and Integrated Two-Level Lot Sizing and Scheduling Problem (SITLSP). This problem can be found in some industrial settings, mainly soft drink companies, where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. The challenge is to simultaneously determine the lot-sizing and scheduling of raw materials in tanks and soft drinks in bottling lines, where setup costs and times depend on the previous items stored and bottled. A multi-population genetic algorithm approach with a novel representation of solutions for individuals and a hierarchical ternary tree structure for populations is proposed. Computational tests include comparisons with an exact approach for small-to-moderate-sized instances and with real-world production plans provided by a manufacturer.en
dc.description.affiliationUniv Duisburg Essen, Dept Technol & Operat Management, D-47048 Duisburg, Germany
dc.description.affiliationUniversidade Federal de Lavras (UFLA), Dept Ciência Computacao, BR-37200000 Lavras, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Matemat Estat & Computacao, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), Dept Engn Producao, BR-13565905 São Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat Estat & Computacao, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 00/02609-2
dc.description.sponsorshipIdCNPq: 303956/2003-8
dc.description.sponsorshipIdCNPq: 522973/95-7
dc.format.extent3097-3119
dc.identifierhttp://dx.doi.org/10.1080/00207540701675833
dc.identifier.citationInternational Journal of Production Research. Abingdon: Taylor & Francis Ltd, v. 47, n. 11, p. 3097-3119, 2009.
dc.identifier.doi10.1080/00207540701675833
dc.identifier.issn0020-7543
dc.identifier.urihttp://hdl.handle.net/11449/7117
dc.identifier.wosWOS:000265289100014
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofInternational Journal of Production Research
dc.relation.ispartofjcr2.623
dc.relation.ispartofsjr1,432
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectlot-sizing and schedulingen
dc.subjectproduction planningen
dc.subjectcombinatorial optimizationen
dc.subjectgenetic algorithmen
dc.subjectsoft drink manufacturingen
dc.titleMulti-population genetic algorithm to solve the synchronized and integrated two-level lot sizing and scheduling problemen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentMatemática e Computação - FCTpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: