Excited state dynamics of the Ho3+ ions in holmium singly doped and holmium, praseodymium-codoped fluoride glasses

Carregando...
Imagem de Miniatura

Data

2007-06-15

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

American Institute of Physics (AIP)

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Journal of Applied Physics. Melville: Amer Inst Physics, v. 101, n. 12, 9 p., 2007.

Itens relacionados

Financiadores