Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

High-resolution satellite image to predict peanut maturity variability in commercial fields

dc.contributor.authordos Santos, Adão Felipe
dc.contributor.authorCorrêa, Lígia Negri [UNESP]
dc.contributor.authorLacerda, Lorena Nunes
dc.contributor.authorTedesco-Oliveira, Danilo [UNESP]
dc.contributor.authorPilon, Cristiane
dc.contributor.authorVellidis, George
dc.contributor.authorda Silva, Rouverson Pereira [UNESP]
dc.contributor.institutionUniversidade Federal de Lavras (UFLA)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Georgia
dc.date.accessioned2021-06-25T11:13:27Z
dc.date.available2021-06-25T11:13:27Z
dc.date.issued2021-01-01
dc.description.abstractOne of the main problems in the peanut production process is to identify the pod maturity stage. Peanut plants have indeterminate growth, which leads to a high pod maturity variability within the same plant. Moreover, the actual method of determining maturity is destructive and highly subjectivity, which does not represent the overall variability in the field. Hence, the main goal of this study was to verify the possibility to estimate peanut maturity and its in-field variability using an alternative non-destructive method based on orbital remote sensing. High-resolution satellite images (~ 3 m) were obtained from the PlanetScope platform for two commercial peanut fields in São Paulo state, Brazil, during the reproductive stage of the peanut crop (89 to 118 days after sowing—DAS). The fields were divided into 54 plots (30 × 30 m). The maturity was obtained using the Hull Scrape method. All Vegetation Indices (VIs) used showed a high Pearson correlation (p < 0.001) between peanut maturity and the VIs, with values decreasing as maturity increased. Non-Linear Index (NLI) values from 0.561 to 0.465 suggested that pods reached greater maturity than 74% (inflection point). The results found in this study indicated a great potential to use high-resolution satellite images to predict peanut maturity variability in commercial field. In addition, the proposed method contributes to monitoring the dynamics spatio-temporal of maturity progression, allowing for more accurate in-season and inversion management strategies in peanut.en
dc.description.affiliationDepartment of Agriculture Lavras Federal University (UFLA), Aquenta Sol
dc.description.affiliationDepartment of Engineering and Exact Sciences São Paulo State University (UNESP), Via Access Prof. Paulo Donato Castellane s/n
dc.description.affiliationDepartment of Crop and Soil Sciences University of Georgia, Tifton Campus, 2360 Rainwater Road
dc.description.affiliationUnespDepartment of Engineering and Exact Sciences São Paulo State University (UNESP), Via Access Prof. Paulo Donato Castellane s/n
dc.identifierhttp://dx.doi.org/10.1007/s11119-021-09791-1
dc.identifier.citationPrecision Agriculture.
dc.identifier.doi10.1007/s11119-021-09791-1
dc.identifier.issn1573-1618
dc.identifier.issn1385-2256
dc.identifier.scopus2-s2.0-85102937884
dc.identifier.urihttp://hdl.handle.net/11449/208518
dc.language.isoeng
dc.relation.ispartofPrecision Agriculture
dc.sourceScopus
dc.subjectArachis hypogaea L
dc.subjectPlanetScope images
dc.subjectPrecision harvest
dc.subjectRemote sensing
dc.subjectVegetation indices
dc.titleHigh-resolution satellite image to predict peanut maturity variability in commercial fieldsen
dc.typeArtigo
unesp.author.orcid0000-0003-3405-5360[1]
unesp.author.orcid0000-0003-2087-3127[2]
unesp.author.orcid0000-0003-1875-1489[4]
unesp.author.orcid0000-0002-9886-7352[5]
unesp.author.orcid0000-0002-5425-241X[6]
unesp.author.orcid0000-0001-8852-2548[7]
unesp.departmentEngenharia Rural - FCAVpt

Arquivos