Bekenstein bound in asymptotically free field theory

Imagem de Miniatura



Título da Revista

ISSN da Revista

Título de Volume


Amer Physical Soc


For spatially bounded free fields, the Bekenstein bound states that the specific entropy satisfies the inequality S/E <= 2 pi R, where R stands for the radius of the smallest sphere that circumscribes the system. The validity of the Bekenstein bound in the asymptotically free side of the Euclidean (lambda phi(4))d scalar field theory is investigated. We consider the system in thermal equilibrium with a reservoir at temperature beta(-1) and defined in a compact spatial region without boundaries. Using the effective potential, we discuss the thermodynamic of the model. For low and high temperatures the system presents a condensate. We present the renormalized mean energy E and entropy S for the system and show in which situations the specific entropy satisfies the quantum bound.



Como citar

Physical Review D. College Pk: Amer Physical Soc, v. 82, n. 4, p. 11, 2010.