Poliedros de Kepler-Poinsot: uma verificação da relação de Euler com jujubas, canudos e varetas.

dc.contributor.advisorLocci, Valter [UNESP]
dc.contributor.authorBaraldi, Marcos Luchiari
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-09-12T13:24:07Z
dc.date.available2018-09-12T13:24:07Z
dc.date.issued2018-08-03
dc.description.abstractEste trabalho apresenta uma verificação de uma das relações mais importantes da matemática elementar: a relação de Euler. Ela expressa uma relação entre o número vértices, arestas e faces de poliedros convexos, podendo ser estendida aos poliedros estrelados, particularmente aos de Kepler-Poinsot. Para analisar tal relação, a proposta é utilizar material concreto, como jujubas, canudos e varetas de fibra. A princípio é realizada a construção dos poliedros de Platão, canudos rígidos e coloridos, onde é possível verificar com facilidade a veracidade da Relação de Euler. Na sequência utilizam-se as varetas de fibra de vidro 1,4 mm que com a introdução nas arestas dos poliedros, verifica-se facilmente que apenas o dodecaedro e o icosaedro são passíveis da estrelação, por prolongamento das arestas obtendo assim, dois dos poliedros estrelados de Kepler-Poinsot. Por fim, é analisado que a Relação de Euler, também se verifica para esses estrelados. Com tal procedimento fica mais perceptível a não existência de outros poliedros estrelados, pois a partir de sua construção com canudos e a ampliação de suas arestas com varetas fica claro a não intersecção delas. Vale lembrar que tais atividades lúdicas são incentivadas no ensino da matemática e algumas já foram abordadas em dissertações do PROFMAT e em documentos oficiais de ensino no Brasil, como nos Parâmetros Curriculares Nacionais, no Currículo do Estado de São Paulo, matrizes de referências de avaliações tais como: Saresp (Sistema de avaliação de rendimento escolar do estado de São Paulo), Saeb (Sistema nacional de avaliação do ensino básico) e ENEM (Exame nacional do ensino médio).pt
dc.description.abstractThis paper presents a verification of one of the most important relations of elementary mathematics: Euler's relation. It expresses a relation between the number of vertices, edges and faces of convex polyhedra, and can be extended to the starry polyhedra, particularly to those of Kepler-Poinsot. To analyze this relationship, the proposal is to use concrete material, such as jelly beans, straws and fiber rods. At first the construction of Plato's polyhedrons, rigid and colored straws, is carried out, where it is possible to verify with ease the veracity of the Euler Relation. The 1.4 mm glass fiber rods are then used which, with the introduction of polyhedron edges, can easily be verified that only the dodecahedron and the icosahedron are capable of staring by prolonging the edges, thus obtaining two of the polyhedra starring Kepler-Poinsot. Finally, it is analyzed that the relation of Euler, also is verified for these stars. With such a procedure it is more noticeable the existence of other starry polyhedra, since from its construction with straws and the enlargement of its edges with rods it is clear the nonintersection of them. It is worth remembering that such play activities are encouraged in the teaching of mathematics and some have already been addressed in PROFMAT dissertations and in official teaching documents in Brazil, such as in the National Curriculum Parameters, in the Curriculum of the State of São Paulo, references reference matrices such as: Saresp (System of evaluation of school performance of the state of São Paulo), Saeb (National system of evaluation of basic education) and ENEM (National High School Examination).en
dc.identifier.aleph000907689
dc.identifier.capes31075010001P2
dc.identifier.urihttp://hdl.handle.net/11449/155971
dc.language.isopor
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectAprendizagem matemáticapt
dc.subjectMaterial concretopt
dc.subjectRelação de Eulerpt
dc.subjectPoliedros de Kepler-Poinsotpt
dc.subjectLearning Mathematicsen
dc.subjectConcrete materialen
dc.subjectEuler relationen
dc.subjectKepler-Poinsot polyhedraen
dc.titlePoliedros de Kepler-Poinsot: uma verificação da relação de Euler com jujubas, canudos e varetas.pt
dc.title.alternativeKepler-Poinsot polyhedra: a check of Euler's relationship with jelly beans, straws and rods.en
dc.typeDissertação de mestrado
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.embargoOnlinept
unesp.graduateProgramMatemática em Rede Nacional - IBILCEpt
unesp.knowledgeAreaEnsino de ciências e matemáticapt
unesp.researchAreaNão constapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
baraldi_ml_me_sjrp.pdf
Tamanho:
3.19 MB
Formato:
Adobe Portable Document Format
Descrição:

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.99 KB
Formato:
Item-specific license agreed upon to submission
Descrição: