A binary-constrained Geometric Semantic Genetic Programming for feature selection purposes

dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorRosa, Gustavo Henrique [UNESP]
dc.contributor.authorPapa, Luciene Patrici
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSao Paulo Southwestern Coll
dc.date.accessioned2018-11-26T17:44:22Z
dc.date.available2018-11-26T17:44:22Z
dc.date.issued2017-12-01
dc.description.abstractFeature selection concerns the task of finding the subset of features that are most relevant to some specific problem in the context of machine learning. By selecting proper features, one can reduce the computational complexity of the learned model, and to possibly enhance its effectiveness by reducing the well-known overfitting. During the last years, the problem of feature selection has been modeled as an optimization task, where the idea is to find the subset of features that maximize some fitness function, which can be a given classifier's accuracy or even some measure concerning the samples' separability in the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming (GSGP) in the context of feature selection, and we experimentally showed it can work properly with both conic and non-conic fitness landscapes. We observed that there is no need to restrict the feature selection modeling into GSGP constraints, which can be quite useful to adopt the semantic operators to a broader range of applications. (C) 2017 Elsevier B.V. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, Brazil
dc.description.affiliationSao Paulo Southwestern Coll, Av Prof Celso Ferreira Silva 1001,14-01, BR-18707150 Avare, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2010/15566-1
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent59-66
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2017.10.002
dc.identifier.citationPattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 100, p. 59-66, 2017.
dc.identifier.doi10.1016/j.patrec.2017.10.002
dc.identifier.fileWOS000418101300009.pdf
dc.identifier.issn0167-8655
dc.identifier.urihttp://hdl.handle.net/11449/163635
dc.identifier.wosWOS:000418101300009
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectFeature selection
dc.subjectGeometric Semantic Genetic Programming
dc.subjectOptimum-path forest
dc.titleA binary-constrained Geometric Semantic Genetic Programming for feature selection purposesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000418101300009.pdf
Tamanho:
660.81 KB
Formato:
Adobe Portable Document Format
Descrição: