Publicação:
Oropharyngeal dysphagia identification using wavelets and optimum path forest

dc.contributor.authorSpadotto, André Augusto
dc.contributor.authorPereira, José Carlos
dc.contributor.authorGuido, Rodrigo Capobianco
dc.contributor.authorPapa, João Paulo
dc.contributor.authorFalcão, Alexandre Xavier
dc.contributor.authorGatto, Ana Rita [UNESP]
dc.contributor.authorCola, Paula Cristina [UNESP]
dc.contributor.authorSchelp, Arthur Oscar [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:23:39Z
dc.date.available2014-05-27T11:23:39Z
dc.date.issued2008-09-05
dc.description.abstractThe swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.en
dc.description.affiliationSchool of Electrical Engineering of São Carlos University of São Paulo USP
dc.description.affiliationInstitute of Computing State University of Campinas - UNICAMP
dc.description.affiliationMedicine School of Botucatu State University of São Paulo - UNESP
dc.description.affiliationUnespMedicine School of Botucatu State University of São Paulo - UNESP
dc.format.extent735-740
dc.identifierhttp://dx.doi.org/10.1109/ISCCSP.2008.4537320
dc.identifier.citation2008 3rd International Symposium on Communications, Control, and Signal Processing, ISCCSP 2008, p. 735-740.
dc.identifier.doi10.1109/ISCCSP.2008.4537320
dc.identifier.lattes5248388716505709
dc.identifier.lattes6542086226808067
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.scopus2-s2.0-50649108366
dc.identifier.urihttp://hdl.handle.net/11449/70569
dc.language.isoeng
dc.relation.ispartof2008 3rd International Symposium on Communications, Control, and Signal Processing, ISCCSP 2008
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectInternational symposium
dc.subjectPattern classifiers
dc.subjectAcoustic generators
dc.subjectClassification (of information)
dc.subjectDiagnosis
dc.subjectDiscrete wavelet transforms
dc.subjectFeature extraction
dc.subjectIdentification (control systems)
dc.subjectMilitary engineering
dc.subjectSignal processing
dc.subjectSupport vector machines
dc.subjectVLSI circuits
dc.subjectWavelet transforms
dc.subjectBiological organs
dc.titleOropharyngeal dysphagia identification using wavelets and optimum path foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes5248388716505709[8]
unesp.author.lattes6542086226808067[3]
unesp.author.orcid0000-0001-5928-7497[8]
unesp.author.orcid0000-0002-0924-8024[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Medicina, Botucatupt
unesp.departmentNeurologia, Psicologia e Psiquiatria - FMBpt

Arquivos