Piezoelectric, elastic, Infrared and Raman behavior of ZnO wurtzite under pressure from periodic DFT calculations

Carregando...
Imagem de Miniatura

Data

2017-03-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The influence of pressure on elastic, piezoelectric (total and clamped-ion contribution), dielectric constants, Infrared and Raman spectra, and topological properties of ZnO wurtzite structure was carried out via periodic DFT/B3LYP methodology. The computational simulation indicated that, as the pressure increases, the structure becomes more rigid and an enhancement of the direct piezoelectric response along the z-direction was observed. Bader topological analysis and Hirshfeld-I charges showed a slight increase in the ionic character of Zn–O bond. Besides that, changes in the piezoelectric response are mainly due to the approach between Zn and O than to charge transfer phenomena among the two atoms. Pressure induces a sensitive displacement in the Infrared and Raman frequencies and a decrease of the E2 mode. Nevertheless, the increase of pressure does not lead to a change in the semiconductor character, which proves that the ZnO support high pressures and can be applied in different devices.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Chemical Physics, v. 485-486, p. 98-107.

Itens relacionados

Financiadores