Hipercomplexos: um estudo da analicidade e da hiperperiodicidade de funções octoniônicas
Carregando...
Data
2007-03-02
Orientador
Neto, Manoel Ferreira Borges
Coorientador
Pós-graduação
Matemática - IBILCE
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Dissertação de mestrado
Direito de acesso
Acesso aberto
Resumo
Resumo (português)
Com o intuido de bem fundamentar bases teóricas para futuras aplicações dos octônios à Mecânica Quântica, Computação Quântica e Criptografia, um dos objetivos maiores deste trabalho é o de determinar e estudar a analiticidade e hiperperiodicidade de funções octoniônicas, de acordo com o Teorema (3.1), enunciado e demonstrado apropriadamente no texto. Além disso, determina-se para as Funções Trigonométricas Octoniônicas a sua periodicidade, enunciada e demonstrada nos Teoremas (3.2) e (3.3). Outro aspecto relevante abordado diz respeito a uma extensão octoniônica da Função Logarítmica, que pode ser importante para aplicações à Física Teórica de Várias dimensões.
Resumo (inglês)
With the main purpose of setting up a sound theoretical basis in order to apply octonionic algebra to both Quantum Mechanics and Quantum Computation and Criptography, I have studied and determined the regularity of the exponential octonionic function, through the Theorem (3.1). Moreover the determination of the Trigonometrical Octonionic Function is also made and it is obtained its regularity, stated in Theorem (3.2) and (3.3). An octonionic extension of the Logaritimic Function is also well explored, which opens the possibility of a large number of applications in Theoretical Physics of higher dimensions.
Descrição
Idioma
Português
Como citar
MARÃO, José Antônio Pires Ferreira. Hipercomplexos: um estudo da analicidade e da hiperperiodicidade de funções octoniônicas. 2007. 59 f. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas, 2007.