INVARIANTS OF THE TRACE MAP AND UNIFORM SPECTRAL PROPERTIES FOR DISCRETE STURMIAN DIRAC OPERATORS
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Osaka Journal Of Mathematics
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We establish invariants for the trace map associated to a family of 1D discrete Dirac operators with Sturmian potentials. Using these invariants we prove that the operators have purely singular continuous spectrum of zero Lebesgue measure, uniformly on the mass and parameters that define the potentials. For rotation numbers of bounded density we prove that these Dirac operators have purely alpha-continuous spectrum, as to the Schrodinger case, for some alpha is an element of (0, 1). To the Sturmian Schrodinger and Dirac models we establish a comparison between invariants of the trace maps, which allows to compare the numbers alpha's and lower bounds on transport exponents.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Osaka Journal Of Mathematics. Toyonaka: Osaka Journal Of Mathematics, v. 56, n. 2, p. 391-416, 2019.