Publicação:
Automated algorithm to determine k(L)a considering system delay

dc.contributor.authorTorres, Paulina
dc.contributor.authorCerri, Marcel Otavio [UNESP]
dc.contributor.authorArruda Ribeiro, Marcelo Perencin de
dc.contributor.authorRicardo Perez-Correa, J.
dc.contributor.authorAgosin, Eduardo
dc.contributor.institutionPontificia Univ Catolica Chile
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-26T15:44:19Z
dc.date.available2018-11-26T15:44:19Z
dc.date.issued2017-07-01
dc.description.abstractBACKGROUNDQuantification of the volumetric oxygen transfer coefficient (k(L)a) is essential to characterize and optimize the oxygen transfer capacity of bioreactors. First order methodologies are commonly used to estimate k(L)a; however, when the delay of the system cannot be neglected, second-order methodologies are required for accurate estimations. Second-order methods are time consuming and hard to reproduce. In this study, we describe an automated algorithm to estimate k(L)a in conventional bioreactors. RESULTSThe simple, four step algorithm developed considers: (1) data smoothing; (2) selection of a high oxygen variation zone; (3) selection of the time period where the instantaneous k(L)a is constant; and (4) k(L)a estimation. The algorithm was coded in MATLAB and four adjustable parameters were fixed heuristically using eight response curves with different hydrodynamic conditions (varying viscosity, agitation and aeration). Compared with manual processing, 80 validation experiments showed that the proposed automatic algorithm yields much more reproducible results in a fraction of the manual processing time. CONCLUSIONThe algorithm is fast and yields, without human intervention, reliable k(L)a estimations under different hydrodynamic conditions; hence, it is useful for designing high throughput k(L)a assessment systems to optimize oxygen delivery in bioreactors. (c) 2016 Society of Chemical Industryen
dc.description.affiliationPontificia Univ Catolica Chile, Sch Engn, Dept Chem & Bioproc Engn, Vicuna Mackenna 4860, Santiago, Chile
dc.description.affiliationUniv Estadual Paulista, Fac Pharmaceut Sci, Dept Bioproc & Biotechnol, Araraquara, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Chem Engn, Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Pharmaceut Sci, Dept Bioproc & Biotechnol, Araraquara, SP, Brazil
dc.description.sponsorshipSantander Bank
dc.description.sponsorshipCONICYT-PCHA/Doctorado Nacional
dc.description.sponsorshipIdCONICYT-PCHA/Doctorado Nacional: 21140759
dc.format.extent1630-1637
dc.identifierhttp://dx.doi.org/10.1002/jctb.5157
dc.identifier.citationJournal Of Chemical Technology And Biotechnology. Hoboken: Wiley, v. 92, n. 7, p. 1630-1637, 2017.
dc.identifier.doi10.1002/jctb.5157
dc.identifier.issn0268-2575
dc.identifier.urihttp://hdl.handle.net/11449/159571
dc.identifier.wosWOS:000403025500018
dc.language.isoeng
dc.publisherWiley-Blackwell
dc.relation.ispartofJournal Of Chemical Technology And Biotechnology
dc.relation.ispartofsjr0,766
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectoxygen transfer
dc.subjectvolumetric oxygen transfer coefficient
dc.subjectautomated volumetric oxygen transfer coefficient estimation
dc.subjectgassing-out method
dc.subjectsystem delay
dc.titleAutomated algorithm to determine k(L)a considering system delayen
dc.typeArtigo
dcterms.licensehttp://olabout.wiley.com/WileyCDA/Section/id-406071.html
dcterms.rightsHolderWiley-Blackwell
dspace.entity.typePublication
unesp.author.orcid0000-0001-6874-1313[2]

Arquivos

Coleções