A Fully Unsupervised Machine Learning Framework for Algal Bloom Forecasting in Inland Waters Using MODIS Time Series and Climatic Products

dc.contributor.authorAnanias, Pedro Henrique M. [UNESP]
dc.contributor.authorNegri, Rogerio G. [UNESP]
dc.contributor.authorDias, Mauricio A. [UNESP]
dc.contributor.authorSilva, Erivaldo A. [UNESP]
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-11-30T13:46:38Z
dc.date.available2022-11-30T13:46:38Z
dc.date.issued2022-09-01
dc.description.abstractProgressively monitoring water quality is crucial, as aquatic contaminants can pose risks to human health and other organisms. Machine learning can support the development of new effective tools for water monitoring, including the detection of algal blooms from remotely sensed image series. Therefore, in this paper, we introduce the Algal Bloom Forecast (ABF) framework, a fully automated framework for algal bloom prediction in inland water bodies. Our approach combines machine learning, time series of remotely sensed products (i.e., Moderate-Resolution Imaging Spectroradiometer (MODIS) images), environmental data and spectral indices to build anomaly detection models that can predict the occurrence of algal bloom events in the posterior period. Our assessments focused on the application of the ABF framework equipped with the support vector machine (SVM), random forest (RF), and long short-term memory (LSTM) methods, the outcomes of which were compared through different evaluation metrics such as global accuracy, the kappa coefficient, F1-Score and R-2-Score. Case studies covering the Erie (USA), Chilika (India) and Taihu (China) lakes are presented to demonstrate the effectiveness and flexibility of our learning approach. Based on comprehensive experimental tests, we found that the best algal bloom predictions were achieved by bringing together the ABF design with the RF model.en
dc.description.affiliationSao Paulo State Univ, UNESP, Natl Ctr Monitoring & Early Warning Nat Disasters, Grad Program Nat Disasters, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Sci & Technol Inst ICT, BR-01049010 Sao Jose Dos Campos, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Fac Sci & Technol FCT, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationSao Paulo State Univ, UNESP, Inst Biosci Letters & Exact Sci IBILCE, BR-15054000 Sao Jose Do Rio Preto, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Natl Ctr Monitoring & Early Warning Nat Disasters, Grad Program Nat Disasters, BR-12245000 Sao Jose Dos Campos, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Sci & Technol Inst ICT, BR-01049010 Sao Jose Dos Campos, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Fac Sci & Technol FCT, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Inst Biosci Letters & Exact Sci IBILCE, BR-15054000 Sao Jose Do Rio Preto, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipSao Paulo State University (UNESP)
dc.description.sponsorshipIdFAPESP: 2021/01305-6
dc.description.sponsorshipIdFAPESP: 2021/03328-3
dc.description.sponsorshipIdFAPESP: 2016/24185-8
dc.description.sponsorshipIdCNPq: 427915/2018-0
dc.description.sponsorshipIdCNPq: 304402/2019-2
dc.description.sponsorshipIdCNPq: 316228/2021-4
dc.format.extent22
dc.identifierhttp://dx.doi.org/10.3390/rs14174283
dc.identifier.citationRemote Sensing. Basel: Mdpi, v. 14, n. 17, 22 p., 2022.
dc.identifier.doi10.3390/rs14174283
dc.identifier.issn2072-4292
dc.identifier.urihttp://hdl.handle.net/11449/237849
dc.identifier.wosWOS:000851804800001
dc.language.isoeng
dc.publisherMdpi
dc.relation.ispartofRemote Sensing
dc.sourceWeb of Science
dc.subjectAlgal bloom
dc.subjectRemote sensing
dc.subjectMODIS
dc.subjectPrediction
dc.subjectMachine learning
dc.titleA Fully Unsupervised Machine Learning Framework for Algal Bloom Forecasting in Inland Waters Using MODIS Time Series and Climatic Productsen
dc.typeArtigo
dcterms.rightsHolderMdpi
unesp.author.orcid0000-0002-1073-9939[5]
unesp.departmentEstatística - FCTpt

Arquivos