Manifold Correlation Graph for Semi-Supervised Learning

dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorPedronette, Daniel C. G. [UNESP]
dc.contributor.authorBreve, Fabricio [UNESP]
dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:24:12Z
dc.date.available2021-06-25T12:24:12Z
dc.date.issued2018-01-01
dc.description.abstractDue to the growing availability of unlabeled data and the difficulties in obtaining labeled data, the use of semi-supervised learning approaches becomes even more promising. The capacity of taking into account the dataset structure is of crucial relevance for effectively considering the unlabeled data. In this paper, a novel classifier is proposed through a manifold learning approach. The graph is constructed based on a new hybrid similarity measure which encodes both supervised and unsupervised information. Next, strongly connected components are computed and used to analyze the dataset manifold. The classification is performed through a voting scheme based on primary (labeled) and secondary (unlabeled) voters. An experimental evaluation is conducted, considering various datasets, diverse situations of training/test dataset sizes and comparison with baselines. The proposed method achieved positive results in most of situations.en
dc.description.affiliationSao Paulo State Univ UNESP, Dept Stat Appl Math & Comp DEMAC, Rio Claro, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Dept Stat Appl Math & Comp DEMAC, Rio Claro, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPetrobras
dc.description.sponsorshipIdFAPESP: 2017/02091-4
dc.description.sponsorshipIdFAPESP: 2016/05669-4
dc.description.sponsorshipIdFAPESP: 2013/08645-0
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.description.sponsorshipIdPetrobras: 2014/00545-0
dc.format.extent7
dc.identifier.citation2018 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 7 p., 2018.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/209623
dc.identifier.wosWOS:000585967404013
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2018 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.titleManifold Correlation Graph for Semi-Supervised Learningen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee

Arquivos