Publicação:
A note on permanence for a nicholson's blowflies model with delay

dc.contributor.authorAfonso, S. M. [UNESP]
dc.contributor.authorDe Souza, C. S. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:28:04Z
dc.date.available2022-04-28T19:28:04Z
dc.date.issued2019-01-01
dc.description.abstractIn this work, we will establish conditions to guarantee the permanence of the solution of the Nicholson's blowies model with delay (Formula Presented) where R; Γ : R -→ [0; ∞) are bounded continuous functions, r = sup t2R (t), Φ [-r; 0] -→ [0; ∞) is a continuous function with '(0) > 0, and δ; a : R -→ (0; ∞) are bounded continuous functions. More specifically, we will be interested in obtaining positive constants k and K such that, if x : [-r;∞) → R is the solution of the described system, then k ≤ lim t→1 inf x(t) ≤ lim t→1 sup x(t) ≤ K. Some numerical examples are provided to illustrate our results.en
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESPUniv Estadual Paulista
dc.description.affiliationInstituto de Biociências Letras e Ciências Exatas UNESPUniv Estadual Paulista
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESPUniv Estadual Paulista
dc.description.affiliationUnespInstituto de Biociências Letras e Ciências Exatas UNESPUniv Estadual Paulista
dc.format.extent303-312
dc.identifier.citationDynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, v. 26, n. 5, p. 303-312, 2019.
dc.identifier.issn1492-8760
dc.identifier.scopus2-s2.0-85073552701
dc.identifier.urihttp://hdl.handle.net/11449/221383
dc.language.isoeng
dc.relation.ispartofDynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms
dc.sourceScopus
dc.subjectBoundedness of solution
dc.subjectDelay
dc.subjectNicholson's blowies model
dc.subjectPermanence
dc.subjectPopulation study
dc.titleA note on permanence for a nicholson's blowflies model with delayen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções