Publicação:
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers

dc.contributor.authorZhang, Winston
dc.contributor.authorBianchi, Jonas [UNESP]
dc.contributor.authorTurkestani, Najla Al
dc.contributor.authorLe, Celia
dc.contributor.authorDeleat-Besson, Romain
dc.contributor.authorRuellas, Antonio
dc.contributor.authorCevidanes, Lucia
dc.contributor.authorYatabe, Marilia
dc.contributor.authorGoncalves, Joao [UNESP]
dc.contributor.authorBenavides, Erika
dc.contributor.authorSoki, Fabiana
dc.contributor.authorPrieto, Juan
dc.contributor.authorPaniagua, Beatriz
dc.contributor.authorNajarian, Kayvan
dc.contributor.authorGryak, Jonathan
dc.contributor.authorSoroushmehr, Reza
dc.contributor.institutionUniversity of Michigan
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionArthur A. Dugoni School of Dentistry
dc.contributor.institutionUniversity of North Carolina
dc.date.accessioned2022-04-28T19:49:23Z
dc.date.available2022-04-28T19:49:23Z
dc.date.issued2021-01-01
dc.description.abstractDiagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.en
dc.description.affiliationDepartment of Computational Medicine and Bioinformatics University of Michigan
dc.description.affiliationDepartment of Orthodontics and Pediatric Dentistry University of Michigan
dc.description.affiliationPediatric Dentistry and Orthodontics Sao Paulo State University
dc.description.affiliationDepartment of Orthodontics University of the Pacific Arthur A. Dugoni School of Dentistry
dc.description.affiliationDepartment of Periodontics and Oral Medicine University of Michigan
dc.description.affiliationUniversity of North Carolina
dc.description.affiliationDepartments of Psychiatry Orthodontics and Computer Science University of North Carolina
dc.description.affiliationUnespPediatric Dentistry and Orthodontics Sao Paulo State University
dc.format.extent1810-1813
dc.identifierhttp://dx.doi.org/10.1109/EMBC46164.2021.9629990
dc.identifier.citationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813.
dc.identifier.doi10.1109/EMBC46164.2021.9629990
dc.identifier.issn1557-170X
dc.identifier.scopus2-s2.0-85122539006
dc.identifier.urihttp://hdl.handle.net/11449/223211
dc.language.isoeng
dc.relation.ispartofProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.sourceScopus
dc.titleTemporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markersen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções