On the statistical and transport properties of a non-dissipative Fermi-Ulam model
Carregando...
Arquivos
Data
2015-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of noninteracting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Chaos, v. 25, n. 10, 2015.