Dielectric, electric, and piezoelectric properties of three-phase piezoelectric composite based on castor-oil polyurethane, lead zirconate titanate particles and multiwall carbon nanotubes

dc.contributor.authorFreire Filho, Fernando C. M. [UNESP]
dc.contributor.authorSantos, Josiane A. [UNESP]
dc.contributor.authorSanches, Alex O. [UNESP]
dc.contributor.authorMedeiros, Eliton S.
dc.contributor.authorMalmonge, José A. [UNESP]
dc.contributor.authorSilva, Michael J. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal da Paraíba (UFPB)
dc.date.accessioned2023-07-29T12:45:25Z
dc.date.available2023-07-29T12:45:25Z
dc.date.issued2023-03-05
dc.description.abstractThe effects of multiwall carbon nanotubes (MWCNTs) on the electrical, dielectric, and piezoelectric properties of the ferroelectric ceramic/castor-oil polyurethane (PUR) composite films were evaluated. The three-phase piezoelectric composites were produced by keeping PUR concentration constant while varying lead zirconate titanate (PZT) volume fractions between 10 and 50 vol.%, at two MWCNT concentrations: above and below percolation threshold. The dc electrical conductivity analysis revealed that small amounts of MWCNTs dispersed within PUR/PZT composite films can significantly improve electrical and piezoelectric properties due to their ability to act as conductive bridges between PZT particles in the samples. Using Jonscher's power law, it was possible to determine that the electrical conduction in ac regime occurs through spatial charge hopping between states located within the piezoelectric composite. Analyzing the piezoelectric properties through the d33 coefficient, it was found that PUR-MWCNT/PZT piezoelectric composite displayed higher d33 values (20 pC/N) in comparison to the PUR/PZT two-phase composite (9.5 pC/N) for all PZT loadings. According to these results, the dispersion of MWCNT nanoparticles influences the poling effectiveness of the PZT particles and increases the d33 coefficient of three-phase piezoelectric composites.en
dc.description.affiliationFaculdade de Engenharia Universidade Estadual Paulista (UNESP)
dc.description.affiliationLaboratory of Materials and Biosystems (LAMAB) Universidade Federal da Paraíba (UFPB) Departamento de Engenharia de Materiais
dc.description.affiliationFaculdade de Engenharia e Ciência Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespFaculdade de Engenharia Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespFaculdade de Engenharia e Ciência Universidade Estadual Paulista (UNESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/19809-5
dc.identifierhttp://dx.doi.org/10.1002/app.53572
dc.identifier.citationJournal of Applied Polymer Science, v. 140, n. 9, 2023.
dc.identifier.doi10.1002/app.53572
dc.identifier.issn1097-4628
dc.identifier.issn0021-8995
dc.identifier.scopus2-s2.0-85145714165
dc.identifier.urihttp://hdl.handle.net/11449/246602
dc.language.isoeng
dc.relation.ispartofJournal of Applied Polymer Science
dc.sourceScopus
dc.subjectcastor-oil polyurethane
dc.subjectcomposite
dc.subjectlead zirconate titanate
dc.subjectmultiwalled carbon nanotubes
dc.subjectpiezoelectricity
dc.titleDielectric, electric, and piezoelectric properties of three-phase piezoelectric composite based on castor-oil polyurethane, lead zirconate titanate particles and multiwall carbon nanotubesen
dc.typeArtigo
unesp.author.orcid0000-0003-2730-7435[3]
unesp.author.orcid0000-0002-9033-9141[4]
unesp.author.orcid0000-0002-1773-3142[5]
unesp.author.orcid0000-0002-2971-1696[6]

Arquivos

Coleções