Publicação:
Automatic Classification of Enzyme Family in Protein Annotation

dc.contributor.authorSantos, Cassia T. dos
dc.contributor.authorBazzan, Ana L. C.
dc.contributor.authorLemke, Ney [UNESP]
dc.contributor.authorGuimaraes, K. S.
dc.contributor.authorPanchenko, A.
dc.contributor.authorPrzytycka, T. M.
dc.contributor.institutionUniv Evora
dc.contributor.institutionUniv Fed Rio Grande do Sul
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T22:01:55Z
dc.date.available2020-12-10T22:01:55Z
dc.date.issued2009-01-01
dc.description.abstractMost of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function.en
dc.description.affiliationUniv Evora, Dept Informat, Evora, Portugal
dc.description.affiliationUniv Fed Rio Grande do Sul, Inst Informat, BR-59072970 Natal, RN, Brazil
dc.description.affiliationUNESP, Inst Biociencias, Dept Fysica Biofysica, Botucatu, SP, Brazil
dc.description.affiliationUnespUNESP, Inst Biociencias, Dept Fysica Biofysica, Botucatu, SP, Brazil
dc.format.extent86-+
dc.identifier.citationAdvances In Bioinformatics And Computational Biology, Proceedings. Berlin: Springer-verlag Berlin, v. 5676, p. 86-+, 2009.
dc.identifier.issn0302-9743
dc.identifier.lattes7977035910952141
dc.identifier.urihttp://hdl.handle.net/11449/197391
dc.identifier.wosWOS:000268802500008
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofAdvances In Bioinformatics And Computational Biology, Proceedings
dc.sourceWeb of Science
dc.titleAutomatic Classification of Enzyme Family in Protein Annotationen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes7977035910952141
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos