Preliminary tribo-electrochemical and biological responses of the Ti-TiB-TiCx in-situ composites intended for load-bearing biomedical implants

dc.contributor.authorSousa, L.
dc.contributor.authorAlves, A. C.
dc.contributor.authorCosta, N. A. [UNESP]
dc.contributor.authorGemini-Piperni, S.
dc.contributor.authorRossi, A. L.
dc.contributor.authorRibeiro, A. R.
dc.contributor.authorSimões, S.
dc.contributor.authorToptan, F.
dc.contributor.institutionCMEMS-UMinho – Center of MicroElectroMechanical Systems – Universidade do Minho
dc.contributor.institutionDEMM – Department of Metallurgical and Materials Engineering – Faculdade de Engenharia da Universidade do Porto
dc.contributor.institutionAzurém
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionTribocorrosion and Nanomedicine
dc.contributor.institutionR. Dr. Xavier Sigaud
dc.contributor.institutionUniversidade do Grande Rio
dc.contributor.institutionInstitute of Science and Innovation in Mechanical and Industrial Engineering
dc.contributor.institutionIzmir Institute of Technology
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.date.accessioned2022-04-28T19:48:11Z
dc.date.available2022-04-28T19:48:11Z
dc.date.issued2022-03-10
dc.description.abstractPoor tribocorrosion resistance of Ti and its alloys remains as a concern for load-bearing biomedical implants. Despite being an effective method to improve tribocorrosion resistance, titanium matrix composites (TMCs) have yet to be used in this type of applications. In-situ TiB (titanium boride) and TiC (titanium carbide) reinforcement phases have been considered as one of the best options to produce TMCs once these phases present high compatibility and strong interfacial bonding with Ti. Although the effect of these phases on the mechanical properties of Ti has been thoroughly researched in the last years, their effect on corrosion, tribocorrosion and biocompatibility of Ti is yet to be fully understood. In this work, in-situ Ti-TiB-TiCx composites obtained by reactive hot pressing showed identical corrosion response compared to the unreinforced Ti but displayed improved tribocorrosion behaviour. Under 0.5 N load, composites presented as average a reduction of 51% in wear volume loss and under 10 N the reduction was up to 93%. Early biological tests showed promising results, as composites were biocompatible and induced osteoblasts spreading and possibly proliferation most probably due to composite chemistry and surface hardness.en
dc.description.affiliationCMEMS-UMinho – Center of MicroElectroMechanical Systems – Universidade do Minho Campus de Azurém
dc.description.affiliationDEMM – Department of Metallurgical and Materials Engineering – Faculdade de Engenharia da Universidade do Porto
dc.description.affiliationIBTN/Euro – European Branch of the Institute of Biomaterials Tribocorrosion and Nanomedicine Dept. Eng. Mecânica Universidade do Minho Azurém
dc.description.affiliationUNESP – Universidade Estadual Paulista Faculdade de Ciências
dc.description.affiliationIBTN/Br – Brazilian Branch of the Institute of Biomaterials Tribocorrosion and Nanomedicine
dc.description.affiliationCentro Brasileiro de Pesquisas Físicas (CBPF) R. Dr. Xavier Sigaud, 150 - Urca
dc.description.affiliationUniversidade do Grande Rio, Rua Professor José de Souza Herdy, 1160
dc.description.affiliationLAETA/INEGI Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias
dc.description.affiliationDepartment of Materials Science and Engineering Izmir Institute of Technology
dc.description.affiliationUniversidade Federal do Rio de Janeiro (UFRJ)
dc.description.affiliationUnespUNESP – Universidade Estadual Paulista Faculdade de Ciências
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNuclear Fuel Cycle and Supply Chain
dc.description.sponsorshipIdCAPES: #2017/24319-7
dc.description.sponsorshipIdFAPESP: #2018/25532-9
dc.description.sponsorshipIdFAPESP: 08-5369-FSE-000051
dc.description.sponsorshipIdNuclear Fuel Cycle and Supply Chain: UID/EEA/04436/2019
dc.identifierhttp://dx.doi.org/10.1016/j.jallcom.2021.162965
dc.identifier.citationJournal of Alloys and Compounds, v. 896.
dc.identifier.doi10.1016/j.jallcom.2021.162965
dc.identifier.issn0925-8388
dc.identifier.scopus2-s2.0-85120888579
dc.identifier.urihttp://hdl.handle.net/11449/223014
dc.language.isoeng
dc.relation.ispartofJournal of Alloys and Compounds
dc.sourceScopus
dc.subjectCorrosion
dc.subjectLoad-bearing implants
dc.subjectOsteoblasts
dc.subjectTitanium matrix composites
dc.subjectTribocorrosion
dc.titlePreliminary tribo-electrochemical and biological responses of the Ti-TiB-TiCx in-situ composites intended for load-bearing biomedical implantsen
dc.typeArtigo

Arquivos

Coleções