Evolving long short-term memory networks

dc.contributor.authorLobo Neto, Vicente Coelho [UNESP]
dc.contributor.authorPassos, Leandro Aparecido [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-30T23:49:53Z
dc.date.available2022-04-30T23:49:53Z
dc.date.issued2020-01-01
dc.description.abstractMachine learning techniques have been massively employed in the last years over a wide variety of applications, especially those based on deep learning, which obtained state-of-the-art results in several research fields. Despite the success, such techniques still suffer from some shortcomings, such as the sensitivity to their hyperparameters, whose proper selection is context-dependent, i.e., the model may perform better over each dataset when using a specific set of hyperparameters. Therefore, we propose an approach based on evolutionary optimization techniques for fine-tuning Long Short-Term Memory networks. Experiments were conducted over three public word-processing datasets for part-of-speech tagging. The results showed the robustness of the proposed approach for the aforementioned task.en
dc.description.affiliationRecogna Laboratory School of Sciences São Paulo State University
dc.description.affiliationUnespRecogna Laboratory School of Sciences São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2017/ 25908-6
dc.description.sponsorshipIdFAPESP: 2018/10100-6
dc.description.sponsorshipIdFAPESP: 2019/07665-4
dc.description.sponsorshipIdCNPq: 307066/2017-7
dc.description.sponsorshipIdCNPq: 427968/2018-6
dc.format.extent337-350
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-50417-5_25
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12138 LNCS, p. 337-350.
dc.identifier.doi10.1007/978-3-030-50417-5_25
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85088217406
dc.identifier.urihttp://hdl.handle.net/11449/233010
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectEvolutionary algorithms
dc.subjectLong Short-Term Memory
dc.subjectMetaheuristic optimization
dc.subjectPart-of-Speech tagging
dc.titleEvolving long short-term memory networksen
dc.typeTrabalho apresentado em evento
unesp.author.orcid0000-0001-8593-9583[1]
unesp.author.orcid0000-0003-3529-3109[2]
unesp.author.orcid0000-0002-6494-7514[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos