Transformações de Bäcklund para hierarquias integráveis abelianas
Carregando...
Arquivos
Data
2015-04-09
Autores
Orientador
Gomes, José Franscisco
Zimerman, Abraham Hirsz
Coorientador
Pós-graduação
Física - IFT
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Universidade Estadual Paulista (Unesp)
Tipo
Tese de doutorado
Direito de acesso
Acesso aberto
Resumo
Resumo (inglês)
We study the construction of integrable hierarchies. These hierarchies have infinite equations of motion which arise from the same algebraic structure, and, as a consequence, we can find simultaneously and systematically its solitonic solutions using the Dressing method. Inthiswork, we study the mKdV and KdV hierarchies and calculate explicitly the first few equations of motion for both of them. To the KdV, the Lax operator seems to work only in positive degrees. We determine the Bäcklund Transformations to the positive degrees of mKdV and KdV hierarchies using the fact that equations of motion can be written as total derivatives. We obtain a systematic way to construct the Bäcklund Transformations for the equations of the mKdV hierarchy exploring the gauge invariance of zero curvature equation. We determine the Bäcklund Transformations of Type-I and Type-II for the odd-degrees equations of mKdV hierarchy. We make the explicit calculation for first three positive degrees and also for the next three negative ones
Resumo (português)
Estudamos a construção de hierarquias integráveis. Essas hierarquias possuem infinitas equações de movimento que surgem de uma mesma estrutura algébrica. E por consequência dessa estrutura comum conseguimos encontrar soluções solitônicas para todas essas equações simultânea e sistematicamente, através do método de Dressing. Neste trabalho estudamos as hierarquias mKdV e KdV e calculamos explicitamente equações de movimento para os primeiros graus de ambas. Para a KdV, o Lax obtido, parece funcionar apenas para os graus positivos. Encontrarmos uma maneira de determinar as transformações de Bäcklund para os graus positivos da hierarquia mKdV e KdV usando o fato das equações de movimento poderem ser escritas como derivadas totais. Obtemos uma maneira sistemática de construir as transformações de Bäcklund das equações da hierarquia mKdV explorando a invariância da equação de curvatura nula por transformações de gauge. Determinamos as transfomações de Bäcklund Tipo-I e Tipo-II para as equações de graus ímpares da hierarquia mKdV. Fizemos o cálculo explícito para os três primeiros graus positivos e os três primeiros graus negativos
Descrição
Idioma
Português
Como citar
RETORE, A.L. Transformações de Bäcklund para hierarquias integráveis abelianas. 2015. viii, 68 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Fisica Teorica., 2015.