Improving the Accuracy of the Optimum-Path Forest Supervised Classifier for Large Datasets
Nenhuma Miniatura disponível
Data
2010-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Springer
Tipo
Trabalho apresentado em evento
Direito de acesso
Resumo
In this work, a new approach for supervised pattern recognition is presented which improves the learning algorithm of the Optimum-Path Forest classifier (OPF), centered on detection and elimination of outliers in the training set. Identification of outliers is based on a penalty computed for each sample in the training set from the corresponding number of imputable false positive and false negative classification of samples. This approach enhances the accuracy of OFF while still gaining in classification time, at the expense of a slight increase in training time.
Descrição
Idioma
Inglês
Como citar
Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications. Berlin: Springer-verlag Berlin, v. 6419, p. 467-+, 2010.