Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate
dc.contributor.author | Teixeira, Giovana Rampazzo [UNESP] | |
dc.contributor.author | Mendes, Leonardo Oliveira | |
dc.contributor.author | Veras, Allice Santos Cruz [UNESP] | |
dc.contributor.author | Thorpe, Hayley Hope Allyssa | |
dc.contributor.author | Fávaro, Wagner José | |
dc.contributor.author | De Almeida Chuffa, Luiz Gustavo [UNESP] | |
dc.contributor.author | Pinheiro, Patrícia Fernanda Felipe [UNESP] | |
dc.contributor.author | Martinez, Francisco Eduardo [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | University of Western São Paulo-UNOESTE | |
dc.contributor.institution | University of Guelph | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.date.accessioned | 2020-12-12T01:55:21Z | |
dc.date.available | 2020-12-12T01:55:21Z | |
dc.date.issued | 2020-01-29 | |
dc.description.abstract | Background: Altered lipid metabolism is an important characteristic of neoplastic cells, with androgens and growth factors being major regulatory agents of the lipid metabolism process. We investigated the effect of physical resistance training on lipid metabolism and apoptosis in the adult Wistar rat prostate. Methods: Two experimental groups represented sedentary and physical resistance training. Three days per week for 13 weeks, rats performed jumps in water carrying a weight load strapped to their chests as part of a physical resistance exercise protocol. Two days after the last training session, rats were anesthetized and sacrificed for blood and prostate analysis. Results: Physical exercise improved feeding efficiency, decreased weight gain, regulated the serum-lipid profile, and modulated insulin-like growth factor-1 (IGF-1) and free testosterone concentration. Furthermore, upregulation of cluster of differentiation 36 (CD36), sterol regulatory element binding protein-1 (SREBP-1), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and reduced lysosome membrane protein (LIMPII) expression were also observed in the blood and prostates of trained rats. Consistent with these results, caspase-3 expression was upregulating and the BCL-2/Bax index ratio was decreased in trained rats relative to sedentary animals. Conclusions: In this work, physical resistance training can alter lipid metabolism and increase markers of apoptosis in the prostate, suggesting physical resistance training as a potential novel therapeutic strategy for treating prostate cancer. | en |
dc.description.affiliation | Department of Physiotherapy School of Technology and Sciences UNESP Campus of Presidente Prudente | |
dc.description.affiliation | Postgraduate Program in Movement Sciences Sao Paulo State University-UNESP | |
dc.description.affiliation | Multicenter Graduate Program in Physiological Sciences SBFis São Paulo State University (UNESP) | |
dc.description.affiliation | Postgraduate Program in Animal Science Postgraduate Program in Health Sciences University of Western São Paulo-UNOESTE | |
dc.description.affiliation | Department of Biomedical Sciences Ontario Veterinary College University of Guelph | |
dc.description.affiliation | Department of Structural and Functional Biology State University of Campinas - UNICAMP Institute of Biology | |
dc.description.affiliation | Department of Anatomy São Paulo State University UNESP Institute of Biosciences | |
dc.description.affiliationUnesp | Department of Physiotherapy School of Technology and Sciences UNESP Campus of Presidente Prudente | |
dc.description.affiliationUnesp | Postgraduate Program in Movement Sciences Sao Paulo State University-UNESP | |
dc.description.affiliationUnesp | Multicenter Graduate Program in Physiological Sciences SBFis São Paulo State University (UNESP) | |
dc.description.affiliationUnesp | Department of Anatomy São Paulo State University UNESP Institute of Biosciences | |
dc.identifier | http://dx.doi.org/10.1186/s12944-020-1195-0 | |
dc.identifier.citation | Lipids in Health and Disease, v. 19, n. 1, 2020. | |
dc.identifier.doi | 10.1186/s12944-020-1195-0 | |
dc.identifier.issn | 1476-511X | |
dc.identifier.lattes | 5760560970751598 | |
dc.identifier.orcid | 0000-0003-1452-5708 | |
dc.identifier.scopus | 2-s2.0-85078689096 | |
dc.identifier.uri | http://hdl.handle.net/11449/200015 | |
dc.language.iso | eng | |
dc.relation.ispartof | Lipids in Health and Disease | |
dc.source | Scopus | |
dc.subject | Apoptosis | |
dc.subject | CD36 | |
dc.subject | Physical exercise | |
dc.subject | SCAP | |
dc.subject | SREBP-1 | |
dc.title | Physical resistance training-induced changes in lipids metabolism pathways and apoptosis in prostate | en |
dc.type | Artigo | |
unesp.author.lattes | 5760560970751598[7] | |
unesp.author.orcid | 0000-0002-0044-2939 0000-0002-0044-2939 0000-0002-0044-2939[1] | |
unesp.author.orcid | 0000-0003-1452-5708[7] | |
unesp.department | Fisioterapia - FCT | pt |