Decreased reactive oxygen species production and NOX1, NOX2, NOX4 expressions contribute to hyporeactivity to phenylephrine in aortas of pregnant SHR

dc.contributor.authorTroiano, J. A. [UNESP]
dc.contributor.authorPotje, S. R. [UNESP]
dc.contributor.authorGraton, M. E. [UNESP]
dc.contributor.authorCavalari, P. [UNESP]
dc.contributor.authorPereira, A. A F [UNESP]
dc.contributor.authorVale, G. T.
dc.contributor.authorNakamune, Ana Cláudia de Melo Stevanato [UNESP]
dc.contributor.authorSumida, D. H. [UNESP]
dc.contributor.authorTirapelli, C. R.
dc.contributor.authorAntoniali, C. [UNESP]
dc.contributor.institutionSBFis
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIP - Univ Paulista
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-12-11T16:59:32Z
dc.date.available2018-12-11T16:59:32Z
dc.date.issued2016-01-01
dc.description.abstractAims We determined whether decreased reactive oxygen species (ROS) production in the aorta of pregnant spontaneously hypertensive rats (SHR) resulted in increased nitric oxide (NO) bioavailability and hyporeactivity to phenylephrine (PE). Main methods Systemic and aortic oxidative stress were measured in pregnant and non-pregnant Wistar rats and SHR. Furthermore, the hypotensive effects of apocynin (30 mg/kg) and Tempol (30 mg/kg) were analyzed. Intact aortic rings of pregnant and non-pregnant rats were stimulated with PE in the absence of or after incubation (30 min) with apocynin (100 μmol/L). The effect of apocynin on the concentrations of NO and ROS were measured in aortic endothelial cells (AEC) using DAF-2DA (10 mmol/L) and DHE (2.5 mmol/L), respectively. Western blotting was performed to analyze eNOS, NOX1, NOX2, NOX4 and SOD expression. ROS production was analyzed by the lucigenin chemiluminescence method. Key findings Aortic oxidative stress and ROS concentration in AEC were reduced in pregnant Wistar rats and SHR, when compared to non-pregnant rats. ROS production and NOX1, NOX2 and NOX4 expression in the aortas were decreased in pregnant SHR, but not in pregnant Wistar rats. Increased eNOS expression in aortas and NO concentration in AEC were observed in pregnant Wistar rats and SHR. Apocynin reduced PE-induced vasoconstriction in the aortas of non-pregnant Wistar rats and SHR, and pregnant Wistar rats, but not in the aortas of pregnant SHR. Significance Taken together, these results suggest that ROS production was decreased in the aortas of pregnant SHR and could contribute to higher NO bioavailability and hyporeactivity to PE in the aortas of pregnant SHR.en
dc.description.affiliationPrograma de Pos-Graduacao Multicentrico em Ciencias Fisiologicas SBFis
dc.description.affiliationDepartment of Basic Sciences School of Dentistry of Araçatuba UNESP - Univ Estadual Paulista
dc.description.affiliationSchool of Pharmacy of Araçatuba UNIP - Univ Paulista
dc.description.affiliationDepartment of Psychiatry Nursing and Human Sciences College of Nursing of Ribeirão Preto USP - University of São Paulo
dc.description.affiliationUnespDepartment of Basic Sciences School of Dentistry of Araçatuba UNESP - Univ Estadual Paulista
dc.format.extent178-184
dc.identifierhttp://dx.doi.org/10.1016/j.lfs.2015.12.011
dc.identifier.citationLife Sciences, v. 144, p. 178-184.
dc.identifier.doi10.1016/j.lfs.2015.12.011
dc.identifier.file2-s2.0-84949591172.pdf
dc.identifier.issn1879-0631
dc.identifier.issn0024-3205
dc.identifier.scopus2-s2.0-84949591172
dc.identifier.urihttp://hdl.handle.net/11449/172286
dc.language.isoeng
dc.relation.ispartofLife Sciences
dc.relation.ispartofsjr1,071
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAorta
dc.subjectHypertension
dc.subjectHyporeactivity
dc.subjectPregnancy
dc.subjectReactive oxygen species
dc.titleDecreased reactive oxygen species production and NOX1, NOX2, NOX4 expressions contribute to hyporeactivity to phenylephrine in aortas of pregnant SHRen
dc.typeArtigo
unesp.author.lattes8110154498443749[7]
unesp.author.orcid0000-0001-5098-8406[7]

Arquivos

Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84949591172.pdf
Tamanho:
839.55 KB
Formato:
Adobe Portable Document Format
Descrição: