A Hyperheuristic Approach for Unsupervised Land-Cover Classification
dc.contributor.author | Papa, Joao Papa [UNESP] | |
dc.contributor.author | Papa, Luciene Patrici | |
dc.contributor.author | Pereira, Danillo Roberto [UNESP] | |
dc.contributor.author | Pisani, Rodrigo Jose | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Sao Paulo State South West Coll | |
dc.contributor.institution | Univ Fed Alfenas | |
dc.date.accessioned | 2018-11-26T16:48:26Z | |
dc.date.available | 2018-11-26T16:48:26Z | |
dc.date.issued | 2016-06-01 | |
dc.description.abstract | Unsupervised land-use/cover classification is of great interest, since it becomes even more difficult to obtain high-quality labeled data. Still considered one of the most used clustering techniques, the well-known k-means plays an important role in the pattern recognition community. Its simple formulation and good results in a number of applications have fostered the development of new variants and methodologies to address the problem of minimizing the distance from each dataset sample to its nearest centroid (mean). In this paper, we present a genetic programming-based hyperheuristic approach to combine different metaheuristic techniques used to enhance k-means effectiveness. The proposed approach is evaluated in four satellite and one radar image showing promising results, while outperforming each individual metaheuristic technique. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliation | Sao Paulo State South West Coll, Dept Hlth, Av Prof Clso Ferreira da Silva 1001, BR-18707150 Sao Paulo, Brazil | |
dc.description.affiliation | Univ Fed Alfenas, Inst Nat Sci, BR-37130000 Alfenas, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil | |
dc.format.extent | 2333-2342 | |
dc.identifier | http://dx.doi.org/10.1109/JSTARS.2016.2557584 | |
dc.identifier.citation | Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 2333-2342, 2016. | |
dc.identifier.doi | 10.1109/JSTARS.2016.2557584 | |
dc.identifier.file | WOS000379935100020.pdf | |
dc.identifier.issn | 1939-1404 | |
dc.identifier.uri | http://hdl.handle.net/11449/161736 | |
dc.identifier.wos | WOS:000379935100020 | |
dc.language.iso | eng | |
dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | |
dc.relation.ispartof | Ieee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing | |
dc.relation.ispartofsjr | 1,547 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Hyperheuristic | |
dc.subject | k-means | |
dc.subject | land-cover classification | |
dc.title | A Hyperheuristic Approach for Unsupervised Land-Cover Classification | en |
dc.type | Artigo | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee-inst Electrical Electronics Engineers Inc | |
unesp.author.orcid | 0000-0001-7934-6482[3] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000379935100020.pdf
- Tamanho:
- 2.35 MB
- Formato:
- Adobe Portable Document Format
- Descrição: