A Hyperheuristic Approach for Unsupervised Land-Cover Classification

dc.contributor.authorPapa, Joao Papa [UNESP]
dc.contributor.authorPapa, Luciene Patrici
dc.contributor.authorPereira, Danillo Roberto [UNESP]
dc.contributor.authorPisani, Rodrigo Jose
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionSao Paulo State South West Coll
dc.contributor.institutionUniv Fed Alfenas
dc.date.accessioned2018-11-26T16:48:26Z
dc.date.available2018-11-26T16:48:26Z
dc.date.issued2016-06-01
dc.description.abstractUnsupervised land-use/cover classification is of great interest, since it becomes even more difficult to obtain high-quality labeled data. Still considered one of the most used clustering techniques, the well-known k-means plays an important role in the pattern recognition community. Its simple formulation and good results in a number of applications have fostered the development of new variants and methodologies to address the problem of minimizing the distance from each dataset sample to its nearest centroid (mean). In this paper, we present a genetic programming-based hyperheuristic approach to combine different metaheuristic techniques used to enhance k-means effectiveness. The proposed approach is evaluated in four satellite and one radar image showing promising results, while outperforming each individual metaheuristic technique.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationSao Paulo State South West Coll, Dept Hlth, Av Prof Clso Ferreira da Silva 1001, BR-18707150 Sao Paulo, Brazil
dc.description.affiliationUniv Fed Alfenas, Inst Nat Sci, BR-37130000 Alfenas, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.format.extent2333-2342
dc.identifierhttp://dx.doi.org/10.1109/JSTARS.2016.2557584
dc.identifier.citationIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 6, p. 2333-2342, 2016.
dc.identifier.doi10.1109/JSTARS.2016.2557584
dc.identifier.fileWOS000379935100020.pdf
dc.identifier.issn1939-1404
dc.identifier.urihttp://hdl.handle.net/11449/161736
dc.identifier.wosWOS:000379935100020
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Journal Of Selected Topics In Applied Earth Observations And Remote Sensing
dc.relation.ispartofsjr1,547
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectHyperheuristic
dc.subjectk-means
dc.subjectland-cover classification
dc.titleA Hyperheuristic Approach for Unsupervised Land-Cover Classificationen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
unesp.author.orcid0000-0001-7934-6482[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000379935100020.pdf
Tamanho:
2.35 MB
Formato:
Adobe Portable Document Format
Descrição: