Machine learning modeling in temporal variability of soil respiration in planted forest areas

dc.contributor.advisorPanosso, Alan Rodrigo
dc.contributor.authorVicentini, Maria Elisa [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-12-01T12:16:38Z
dc.date.available2021-12-01T12:16:38Z
dc.date.issued2021-08-09
dc.description.abstractUnderstanding the temporal dynamics of land respiration in tropical ecosystems is challenging, especially when it is associated with Land Use, Land-Use Change and Forestry (LULUCF). Many studies have modeled the dynamics of CO2 emission from soil (FCO2), but few studies have modeled the temporal dynamics of soil O2 influx (FO2). Therefore, the objective of this study was to evaluate the predictive performance of artificial neural networks (ANN), support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and random forest (RF) machine learning (ML) techniques in modeling the temporal variability of FCO2 and FO2 in forests planted in three ecosystems of planted forests: Pinus (Pinus spp), Eucalyptus (Eucalyptus spp), and native species, converted more than 30 years ago in the Cerrado biome, Brazil. We used a database composed of agro-meteorological data, improved vegetation index (EVI), and soil chemical and physical attributes as predictor variables and principal component analysis as the main data mining technique. For each monoculture and native species forest the numbers of FCO2 and FO2 recordings were (n = 500) and (n = 175), respectively. For pine forest, ANNs showed better predictive performance than SVR. The multilayer perceptron (MLPNN) with 12 input variables explained R2 = 42% of the temporal variability in FCO2. The general regression neural network (GRNN) with 10 input variables explained temporal variability in FO2 with an R2 of 56%. For eucalyptus, in the estimation of FCO2, the best predictive performance was obtained with MLP with validation (R² = 0.59; RMSE = 1.034 µmol m-2s-1). FO2 estimation: validation (R² = 0.36; RMSE = 0.076 mg m-2s-1). SVR with radial basis function kernel (SVR-RBF) was superior to the sigmoid (SVR-SIG), and polynomial kernels (SVR-PL), with the following values for FCO2; validation (R² = 0.53; RMSE = 0.990 µmol m-2s-1).In Native Species areas, the best results were: FCO2 with Radial Basis Function Neural Network (RBFNN) (R2 = 0.54, RMSE = 1.015 µmol m-2s-1) and FO2 with RBFNN (R2 = 0.74, 0.079 mg m-2s-1). Estimates of FCO2 showed better predictive performance than FO2. RBFNN was best estimate for FCO2. MLPNN is the best architecture for FO2 (R2 = 0.45, RMSE = 0.94 mg m-2s-1). In relation to ANFIS, FO2, did not show good generalizability and presented the worst performance, showing the highest mean absolute percentage error and lowest accuracy (R2 = 0.12, MAPE 51.27% and R2 = 0.28, MAPE 47.48%) calibration and validation respectively). Analyzing the performance of the two estimates, SVR-RBF for FCO2 performed better than SVR-RBF for FO2. The RF for FCO2 in the calibration and validation phases presented values of the (R2 = 0.80 and R2 = 0.60 respectively). The type of forest influenced temporal variability in soil respiration. We found that soil temperature (Ts) EVI, global solar radiation (GSR), macroporosity (macro), and organic matter (SOM) were the variables that most influenced the two estimates.en
dc.description.abstractCompreender a dinâmica temporal da respiração do solo (RS) nos ecossistemas tropicais é desafiador, principalmente quando está associada à Mudança do uso da terra e Florestas (MUTF). Os diferentes tipos de manejo podem ter impactos na mudança do fluxo CO2 (ou emissão de CO2 do solo - FCO2), e do influxo de oxigênio no solo (FO2). Muitos estudos modelaram a dinâmica temporal da FCO2, mas poucos estudos modelaram a dinâmica temporal do FO2. Portanto, o objetivo deste estudo foi avaliar o desempenho preditivo de quatro técnicas de aprendizado de máquina: redes neurais artificiais (RNA), Regressão por vetores suporte (RVS), Sistema de Inferência Adaptativo Neuro-Difuso (ANFIS) e Random Forest (RF) na modelagem da variabilidade temporal da FCO2 e FO2 em áreas de florestas plantadas convertidas há mais de 30 anos no bioma Cerrado, Brasil, com Eucalyptus (Eucalyptus spp.), Pinus (Pinus spp) e espécies nativa, O banco de dados foi composto pelas seguintes variáveis preditoras: dados agro-meteorológicos, índice de vegetação melhorado (EVI), e atributos químicos e físicos do solo. A análise de componentes principais foi utilizada como técnica de mineração dos dados. Para cada área de monocultivo e reflorestamento com espécies nativas o número de observações das variáveis respostas para FCO2 e FO2 foram (n= 500) e (n = 175) respectivamente. Na floresta de pinus, as RNas, demonstraram melhor desempenho preditivo do que as RVS. Uma rede neural Multilayer Perceptron (MLPNN), constituída com 12 variáveis de entrada explicou 42% da variabilidade temporal da FCO2. A rede neural de regressão geral (GRNN) com 10 variáveis de entrada explicou (R2 = 56%) da variabilidade temporal FO2. Para floresta de eucalipto, na estimativa da FCO2, o melhor desempenho foi obtido com MLPNN na fase de validação (R² = 0,59;) e Raiz quadrada do erro-médio (RMSE = 1,034 µmol m-2 s-1). Para FO2 os valores foram: validação (R² = 0,36; RMSE = 0,076 mg m-2 s-1). Em relação à SVR o desempenho dos modelos com o kernel de função de base radial (SVR-RBF) foi superior ao sigmóide (SVR-SIG), e kernel polinomial (SVR-PL). Os seguintes valores forma observados para FCO2; validação (R² = 0,53; RMSE = 0,990 µmol m-2 s-1). A dinâmica da FCO2 e FO2 nessa área foi associada à respiração das raízes. Na área com espécies nativas, o desempenho mais preditivo para FCO2 foi com Rede Neural de Função de Base Radial (RBFNN) (R2 = 0,54, RMSE = 1,015 µmol m-2s-1) e FO2 com RBFNN (R2 = 0,74; RMSE 0,079 mg m-2s-1). Na segunda fase do estudo, desenvolvemos um modelo global considerando a base de dados das três áreas para estimativa da FCO2 e FO2. As estimativas para FCO2 foram mais perditivas que FO2. .A RBFNN foi a melhor modelo para na FCO2 (R2 = 0,51; RMSE = 0,97 µmol m-2s-1). Em contrapartida a MLPNN foi a melhor arquitetura para o FO2 (R2 = 0,45, RMSE = 0,94 mg m-2s-1). A ANFIS não resultou em um modelo com boa capacidade de generalização para FO2 e apresentou o pior desempenho na calibração (R2 = 0,12, MAPE 51, 27%) e validação (R2 = 0,28 e MAPE 47, 48%) com elevados erros percentuais associados. De uma forma geral o modelo SVR-RBF teve melhor desempenho na FCO2, quando comparado com FO2. O modelo RF foi satisfatório para FCO2 nas fases de calibração e validação R2 0,80 e R2 0,60 respectivamente. O tipo de floresta influenciou a variabilidade temporal na respiração do solo. Verificámos que a temperatura do solo (Ts) EVI, radiação solar (RSG), macroporosidade (macro), e matéria orgânica (MOS) foram as variáveis que mais influenciaram as duas estimativas.pt
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipId001
dc.identifier.capes33004102071P2
dc.identifier.urihttp://hdl.handle.net/11449/215295
dc.language.isoeng
dc.publisherUniversidade Estadual Paulista (Unesp)
dc.rights.accessRightsAcesso aberto
dc.subjectCarbon dynamicsen
dc.subjectSoil-atmosphereen
dc.subjectLand useen
dc.subjectGreenhouse gasesen
dc.subjectMathematical modelsen
dc.subjectDinâmica do carbonopt
dc.subjectAtmosfera do solopt
dc.subjectUso do solopt
dc.subjectGases do efeito estufapt
dc.subjectModelos matemáticospt
dc.titleMachine learning modeling in temporal variability of soil respiration in planted forest areasen
dc.title.alternativeAprendizado de máquina na modelagem da variabilidade temporal da respiração do solo em áreas de floresta plantadapt
dc.typeTese de doutorado
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Jaboticabalpt
unesp.embargo24 meses após a data da defesapt
unesp.examinationboard.typeBanca públicapt
unesp.graduateProgramAgronomia (Ciência do Solo) - FCAVpt
unesp.knowledgeAreaUso e manejo do solo e da águapt
unesp.researchAreaInterações dos atributos pedológicos com manejo do solo.pt

Arquivos

Pacote Original
Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
vicentini_me_dr_jabo_par.pdf
Tamanho:
590.66 KB
Formato:
Adobe Portable Document Format
Descrição:
Carregando...
Imagem de Miniatura
Nome:
vicentini_me_dr_jabo_int.pdf
Tamanho:
3.02 MB
Formato:
Adobe Portable Document Format
Descrição:
Licença do Pacote
Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
2.98 KB
Formato:
Item-specific license agreed upon to submission
Descrição: