Simple and Fast Approach for Synthesis of Reduced Graphene Oxide-MoS(2 )Hybrids for Room Temperature Gas Detection
Carregando...
Arquivos
Data
2018-09-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee-inst Electrical Electronics Engineers Inc
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
The combination of two highly versatile materials as reduced graphene oxide (rGO) and molybdenum disulfide (MoS2) forms the layered rGO-MoS2 hybrids that have great potential for sensing applications. In this paper, we developed a cost-effective, time-saving, and efficient microwave-assisted method to exfoliate rGO and MoS2 nanosheets in a powder mixture for the formation of rGO-MoS2 hybrids. The formation of hybrids with a combination of organic and inorganic 2-D layered materials offers new possibilities for the development of gas sensitive materials. The applied microwave treatment is a simple and fast process for the large-scale synthesis of rGO-MoS2 hybrids. The synthesized rGO-MoS2 hybrids were characterized by X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscopy, Raman, X-ray photoelectron spectroscopy, and thermogravimetric analyses to determine the phase structure, surface morphology, defect formation, binding energy, thermal stability and so on. The synthesized rGO-MoS2 hybrids were tested for sensing application and showed the good performance to detect gases such as O-2, N-2, and NH3 at room temperature.
Descrição
Idioma
Inglês
Como citar
Ieee Transactions On Electron Devices. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 65, n. 9, p. 3943-3949, 2018.