Synthetic Slowness Shear Well-Log Prediction Using Supervised Machine Learning Models

Nenhuma Miniatura disponível

Data

2023-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The shear slowness well-log is a fundamental feature used in reservoir modeling, geomechanics, elastic properties, and borehole stability. This data is indirectly measured by well-logs and assists the geological, petrophysical, and geophysical subsurface characterization. However, the acquisition of shear slowness is not a standard procedure in the well-logging program, especially in mature fields that have a limited logging scope. In this research, we propose to develop machine learning models to create synthetic shear slowness well-logs to fill this gap. We used standard well-log features such as natural gamma-ray, density log, neutron porosity, resistivity logs, and compressional slowness as input data to train the models, and successfully predicted a synthetic shear slowness well-log. Additionally, we created five supervised models using Neural Networks, AdaBoost, XGBoost, and CatBoost algorithms. Among all models created, the neural network algorithm provided the most optimized model, using multi-layer perceptron architecture reaching impressive scores as R 2 of 0.9306, adjusted R 2 of 0.9304, and MSE less than 0.0694.

Descrição

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13588 LNAI, p. 115-130.

Itens relacionados

Financiadores