Predominance of syntrophic bacteria, Methanosaeta and Methanoculleus in a two-stage up-flow anaerobic sludge blanket reactor treating coffee processing wastewater at high organic loading rate
Carregando...
Arquivos
Data
2018-11-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
The effect of the organic loading rate (OLR) on the performance and microbial composition of a two-stage UASB system treating coffee processing wastewater was assessed. The system was operated with OLR up to 18.2 g COD (L d)−1 and effluent recirculation. Methane production and effluent characteristics were monitored. The microbial composition was examined through next-generation sequencing and qPCR from the anaerobic sludge of the first reactor (R1) operated at low and high OLR. The system showed operational stability, obtaining a maximum methane production of 2.2 L CH4 (L d)−1, with a removal efficiency of COD and phenolic compounds of 84 and 73%, respectively. The performance of R1 at high OLR in steady conditions was associated with an appropriate proportion of nutrients (particularly Fe) and a marked increase of the syntrophic bacteria Syntrophus and Candidatus Cloacimonas, and acetoclastic and hydrogenotrophic methanogens, mainly Methanosaeta, Methanoculleus, Methanobacterium and Methanomassiliicoccus.
Descrição
Idioma
Inglês
Como citar
Bioresource Technology, v. 268, p. 158-168.