Publicação:
Data-driven approach in a compartmental epidemic model to assess undocumented infections

dc.contributor.authorCosta, Guilherme S.
dc.contributor.authorCota, Wesley [UNESP]
dc.contributor.authorFerreira, Silvio C.
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionCtr Brasileiro Pesquisas Fis
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T11:37:25Z
dc.date.available2023-07-29T11:37:25Z
dc.date.issued2022-08-17
dc.description.abstractNowcasting and forecasting of epidemic spreading rely on incidence series of reported cases to derive the fundamental epidemiological parameters for a given pathogen. Two relevant drawbacks for predictions are the unknown fractions of undocumented cases and levels of nonpharmacological interventions, which span highly heterogeneously across different places and times. We describe a simple data-driven approach using a compartmental model including asymptomatic and pre-symptomatic contagions that allows to estimate both the level of undocumented infections and the value of effective reproductive number R-t from time series of reported cases, deaths, and epidemiological parameters. The method was applied to epidemic series for COVID-19 across different municipalities in Brazil allowing to estimate the heterogeneity level of under-reporting across different places. The reproductive number derived within the current framework is little sensitive to both diagnosis and infection rates during the asymptomatic states. The methods described here can be extended to more general cases if data is available and adapted to other epidemiological approaches and surveillance data.en
dc.description.affiliationUniv Fed Vicosa, Dept Fis, BR-36570900 Vicosa, MG, Brazil
dc.description.affiliationCtr Brasileiro Pesquisas Fis, Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Med Trop, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Med Botucatu, Dept Infectol, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Med Botucatu, Dept Infectol, Botucatu, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoa de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 88887.507046/2020-00
dc.description.sponsorshipIdCNPq: 430768/2018-4
dc.description.sponsorshipIdCNPq: 311183/2019-0
dc.description.sponsorshipIdFAPEMIG: APQ-02393-18
dc.description.sponsorshipIdCAPES: 001
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1016/j.chaos.2022.112520
dc.identifier.citationChaos Solitons & Fractals. Oxford: Pergamon-elsevier Science Ltd, v. 163, 10 p., 2022.
dc.identifier.doi10.1016/j.chaos.2022.112520
dc.identifier.issn0960-0779
dc.identifier.urihttp://hdl.handle.net/11449/245106
dc.identifier.wosWOS:000865454000003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofChaos Solitons & Fractals
dc.sourceWeb of Science
dc.subjectEpidemic spreading
dc.subjectUndocumented infections
dc.subjectEpidemic surveillance
dc.subjectData-driven modeling
dc.titleData-driven approach in a compartmental epidemic model to assess undocumented infectionsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-8582-1531[2]

Arquivos

Coleções