UNSUPERVISED MANIFOLD LEARNING BY CORRELATION GRAPH AND STRONGLY CONNECTED COMPONENTS FOR IMAGE RETRIEVAL
Nenhuma Miniatura disponível
Data
2014-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto
Resumo
This paper presents a novel manifold learning approach that takes into account the intrinsic dataset geometry. The dataset structure is modeled in terms of a Correlation Graph and analyzed using Strongly Connected Components (SCCs). The proposed manifold learning approach defines a more effective distance among images, used to improve the effectiveness of image retrieval systems. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors. The proposed approach yields better results in terms of effectiveness than various methods recently proposed in the literature.
Descrição
Idioma
Inglês
Como citar
2014 Ieee International Conference On Image Processing (icip). New York: Ieee, p. 1892-1896, 2014.