UNSUPERVISED MANIFOLD LEARNING BY CORRELATION GRAPH AND STRONGLY CONNECTED COMPONENTS FOR IMAGE RETRIEVAL

Nenhuma Miniatura disponível

Data

2014-01-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

This paper presents a novel manifold learning approach that takes into account the intrinsic dataset geometry. The dataset structure is modeled in terms of a Correlation Graph and analyzed using Strongly Connected Components (SCCs). The proposed manifold learning approach defines a more effective distance among images, used to improve the effectiveness of image retrieval systems. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors. The proposed approach yields better results in terms of effectiveness than various methods recently proposed in the literature.

Descrição

Idioma

Inglês

Como citar

2014 Ieee International Conference On Image Processing (icip). New York: Ieee, p. 1892-1896, 2014.

Itens relacionados

Financiadores