Ranking association rules by clustering through interestingness

dc.contributor.authorde Carvalho, Veronica Oliveira [UNESP]
dc.contributor.authorde Paula, Davi Duarte [UNESP]
dc.contributor.authorPacheco, Mateus Violante [UNESP]
dc.contributor.authordos Santos, Waldeilson Eder [UNESP]
dc.contributor.authorde Padua, Renan
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-06T15:30:55Z
dc.date.available2019-10-06T15:30:55Z
dc.date.issued2018-01-01
dc.description.abstractThe association rules (ARs) post-processing step is challenging, since many patterns are extracted and only a few of them are useful to the user. One of the most traditional approaches to find rules that are of interestingness is the use of objective measures (OMs). Due to their frequent use, many of them exist (over 50). Therefore, when a user decides to apply such strategy he has to decide which one to use. To solve this problem this work proposes a process to cluster ARs based on their interestingness, according to a set of OMs, to obtain an ordered list containing the most relevant patterns. That way, the user does not need to know which OM to use/select nor to handle the output of different OMs lists. Experiments show that the proposed process behaves equal or better than as if the best OM had been used.en
dc.description.affiliationInstituto de Geociências e Ciências Exatas UNESP - Univ Estadual Paulista
dc.description.affiliationInstituto de Ciências Matemáticas e de Computação USP - Universidade de São Paulo
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas UNESP - Univ Estadual Paulista
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2015/08059-0
dc.format.extent336-351
dc.identifierhttp://dx.doi.org/10.1007/978-3-030-02837-4_28
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10632 LNAI, p. 336-351.
dc.identifier.doi10.1007/978-3-030-02837-4_28
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85059948027
dc.identifier.urihttp://hdl.handle.net/11449/187266
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAssociation rules
dc.subjectClustering
dc.subjectObjective measures
dc.subjectPost-processing
dc.titleRanking association rules by clustering through interestingnessen
dc.typeTrabalho apresentado em evento

Arquivos

Coleções