A Multi-Class Probabilistic Optimum-Path Forest
Carregando...
Fonte externa
Fonte externa
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Fonte externa
Fonte externa
Resumo
The advent of machine learning provided numerous benefits to humankind, impacting fields such as medicine, military, and entertainment, to cite a few. In most cases, given some instances from a previously known domain, the intelligent algorithm is encharged of predicting a label that categorizes such samples in some learned context. Among several techniques capable of accomplishing such classification tasks, one may refer to Support Vector Machines, Neural Networks, or graph-based classifiers, such as the Optimum-Path Forest (OPF). Even though such a paradigm satisfies a wide sort of problems, others require the predicted class label and the classifier’s confidence, i.e., how sure the model is while attributing labels. Recently, an OPF-based variant was proposed to tackle this problem, i.e., the Probabilistic Optimum-Path Forest. Despite its satisfactory results over a considerable number of datasets, it was conceived to deal with binary classification only, thus lacking in the context of multi-class problems. Therefore, this paper proposes the Multi-Class Probabilistic Optimum-Path Forest, an extension designed to outdraw limitations observed in the standard Probabilistic OPF.
Descrição
Palavras-chave
Multi-Class, Optimum-Path Forest, Probabilistic Classification
Idioma
Inglês
Citação
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 5, p. 361-368.