Logo do repositório
 

Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

This study developed an experimental quaternary titanium (Ti) alloy and evaluated its surface properties and electrochemical stability. The viability for a biofunctional surface treatment was also tested. Ti-35Nb-7Zr-5Ta (wt%) alloy was developed from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. All groups had two surface conditions: untreated (machined surface) and modified by plasma electrolytic oxidation (PEO) (treated surface). The experimental alloy was successfully synthesized and exhibited β microstructure. PEO treatment created a porous surface with increased roughness, surface free energy, hardness and electrochemical stability (p < 0.05). For the machined surfaces, the Ti-Nb-Zr-Ta alloy presented the lowest hardness and elastic modulus (p < 0.05) and displayed greater polarization resistance relative to cpTi. Only PEO-treated cpTi and Ti-Al-V alloys exhibited anatase and rutile as crystalline structures. The β experimental Ti-Nb-Zr-Ta alloy seems to be a good alternative for the manufacture of dental implants, since it presents elastic modulus closer to that of bone, feasibility for surface treatment, electrochemical stability and absence of toxic elements.

Descrição

Palavras-chave

Bioactive coating, Corrosion, Dental implant, Metals and alloys, Surface property, Titanium

Idioma

Inglês

Citação

Journal of Alloys and Compounds, v. 770, p. 1038-1048.

Itens relacionados

Unidades

Unidade
Faculdade de Odontologia
FOAR
Campus: Araraquara


Cursos de graduação

Programas de pós-graduação