Functionalization of an experimental Ti-Nb-Zr-Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation
Nenhuma Miniatura disponível
Data
2019-01-05
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto
Resumo
This study developed an experimental quaternary titanium (Ti) alloy and evaluated its surface properties and electrochemical stability. The viability for a biofunctional surface treatment was also tested. Ti-35Nb-7Zr-5Ta (wt%) alloy was developed from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. All groups had two surface conditions: untreated (machined surface) and modified by plasma electrolytic oxidation (PEO) (treated surface). The experimental alloy was successfully synthesized and exhibited β microstructure. PEO treatment created a porous surface with increased roughness, surface free energy, hardness and electrochemical stability (p < 0.05). For the machined surfaces, the Ti-Nb-Zr-Ta alloy presented the lowest hardness and elastic modulus (p < 0.05) and displayed greater polarization resistance relative to cpTi. Only PEO-treated cpTi and Ti-Al-V alloys exhibited anatase and rutile as crystalline structures. The β experimental Ti-Nb-Zr-Ta alloy seems to be a good alternative for the manufacture of dental implants, since it presents elastic modulus closer to that of bone, feasibility for surface treatment, electrochemical stability and absence of toxic elements.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Alloys and Compounds, v. 770, p. 1038-1048.