Anisotropic 1-Laplacian problems with unbounded weights
dc.contributor.author | Ortiz Chata, Juan C. [UNESP] | |
dc.contributor.author | Pimenta, Marcos T. O. [UNESP] | |
dc.contributor.author | Segura de León, Sergio | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universitat de València | |
dc.date.accessioned | 2022-04-29T08:32:08Z | |
dc.date.available | 2022-04-29T08:32:08Z | |
dc.date.issued | 2021-12-01 | |
dc.description.abstract | In this work we prove the existence of nontrivial bounded variation solutions to quasilinear elliptic problems involving a weighted 1-Laplacian operator. A key feature of these problems is that weights are unbounded. One of our main tools is the well-known Caffarelli-Kohn-Nirenberg’s inequality, which is established in the framework of weighted spaces of functions of bounded variation (and that provides us the necessary embeddings between weighted spaces). Additional tools are suitable variants of the Mountain Pass Theorem as well as an extension of the pairing theory by Anzellotti to this new setting. | en |
dc.description.affiliation | Departamento de Matemática Inst. de Biociências Letras e Ciências Exatas Universidade Estadual Paulista - UNESP, 15054-000 | |
dc.description.affiliation | Departamento de Matemática e Computação Fac. de Ciências e Tecnologia Universidade Estadual Paulista - UNESP | |
dc.description.affiliation | Departament d’Anàlisi Matemàtica Universitat de València | |
dc.description.affiliationUnesp | Departamento de Matemática Inst. de Biociências Letras e Ciências Exatas Universidade Estadual Paulista - UNESP, 15054-000 | |
dc.description.affiliationUnesp | Departamento de Matemática e Computação Fac. de Ciências e Tecnologia Universidade Estadual Paulista - UNESP | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2017/06119-0 | |
dc.description.sponsorshipId | FAPESP: 2019/13503-7 | |
dc.description.sponsorshipId | FAPESP: 2019/14330-9 | |
dc.description.sponsorshipId | CNPq: 303788/2018-6 | |
dc.identifier | http://dx.doi.org/10.1007/s00030-021-00717-4 | |
dc.identifier.citation | Nonlinear Differential Equations and Applications, v. 28, n. 6, 2021. | |
dc.identifier.doi | 10.1007/s00030-021-00717-4 | |
dc.identifier.issn | 1420-9004 | |
dc.identifier.issn | 1021-9722 | |
dc.identifier.scopus | 2-s2.0-85112806623 | |
dc.identifier.uri | http://hdl.handle.net/11449/229363 | |
dc.language.iso | eng | |
dc.relation.ispartof | Nonlinear Differential Equations and Applications | |
dc.source | Scopus | |
dc.subject | 1-Laplacian operator | |
dc.subject | Caffarelli–Kohn–Nirenberg inequality | |
dc.subject | Weighted L∞–divergence–measure vector fields | |
dc.subject | Weighted quasilinear elliptic problems | |
dc.title | Anisotropic 1-Laplacian problems with unbounded weights | en |
dc.type | Artigo | |
unesp.author.orcid | 0000-0003-4961-3038[2] | |
unesp.author.orcid | 0000-0002-8515-7108[3] | |
unesp.campus | Universidade Estadual Paulista (Unesp), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática e Computação - FCT | pt |
unesp.department | Matemática - IBILCE | pt |