Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Double distance-calculation-pruning for similarity search

dc.contributor.authorPola, Ives Renê Venturini
dc.contributor.authorPola, Fernanda Paula Barbosa
dc.contributor.authorEler, Danilo Medeiros [UNESP]
dc.contributor.institutionFederal University of Technology-UTFPR
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:37:07Z
dc.date.available2018-12-11T17:37:07Z
dc.date.issued2018-05-17
dc.description.abstractMany modern applications deal with complex data, where retrieval by similarity plays an important role. Complex data main comparison mechanisms are based on similarity predicates. They are usually immersed in metric spaces where distance functions are employed to express the similarity and a lower bound property is usually employed to prevent distance calculations. Retrieval by similarity is implemented by unary and binary operators. Most of the studies aimed at improving the efficiency of unary operators, either by using metric access methods or mathematical properties to prune parts of the search space during query answering. Studies on binary operators to solve similarity joins aim to improve efficiency and most of them use only the metric lower bound property for pruning. However, they are dependent on the query parameters, such as the range radius. In this paper, we propose a generic concept that uses both lower and upper bound properties based on the Metric Spaces Theory to increase the avoidance of element comparisons. The concept can be applied on any existing similarity retrieval method. We analyzed the prunability power increase and show an example of its application on classical join nested loops algorithms. Practical evaluation over both synthetic and real data sets shows that our method reduced the number of distance evaluations on similarity joins.en
dc.description.affiliationDepartment of Informatics Federal University of Technology-UTFPR
dc.description.affiliationDepartment of Mathematics Federal University of Technology-UTFPR
dc.description.affiliationSão Paulo State University-UNESP Bairro: Centro Educacional, Rua Roberto Simonsen, 305
dc.description.affiliationUnespSão Paulo State University-UNESP Bairro: Centro Educacional, Rua Roberto Simonsen, 305
dc.identifierhttp://dx.doi.org/10.3390/info9050124
dc.identifier.citationInformation (Switzerland), v. 9, n. 5, 2018.
dc.identifier.doi10.3390/info9050124
dc.identifier.file2-s2.0-85047145811.pdf
dc.identifier.issn2078-2489
dc.identifier.scopus2-s2.0-85047145811
dc.identifier.urihttp://hdl.handle.net/11449/179874
dc.language.isoeng
dc.relation.ispartofInformation (Switzerland)
dc.relation.ispartofsjr0,222
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectInformation retrieval
dc.subjectMetric indexing
dc.subjectSimilarity joins
dc.titleDouble distance-calculation-pruning for similarity searchen
dc.typeArtigo
unesp.departmentMatemática e Computação - FCTpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85047145811.pdf
Tamanho:
1.06 MB
Formato:
Adobe Portable Document Format
Descrição: