Orthogonality of quasi-orthogonal polynomials

dc.contributor.authorBracciali, Cleonice F. [UNESP]
dc.contributor.authorMarcellán, Francisco
dc.contributor.authorVarma, Serhan
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidad Carlos III de Madrid
dc.contributor.institutionInstituto de Ciencias Matemáticas (ICMAT)
dc.contributor.institutionAnkara University
dc.date.accessioned2019-10-06T15:33:06Z
dc.date.available2019-10-06T15:33:06Z
dc.date.issued2018-01-01
dc.description.abstractA result of Pólya states that every sequence of quadrature formulas Q n (f) with n nodes and positive Cotes numbers converges to the integral I(f) of a continuous function f provided Q n (f) = I(f) for a space of algebraic polynomials of certain degree that depends on n. The classical case when the algebraic degree of precision is the highest possible is well-known and the quadrature formulas are the Gaussian ones whose nodes coincide with the zeros of the corresponding orthogonal polynomials and the Cotes (Christoffel) numbers are expressed in terms of the so-called kernel polynomials. In many cases it is reasonable to relax the requirement for the highest possible degree of precision in order to gain the possibility to either approximate integrals of more specific continuous functions that contain a polynomial factor or to include additional fixed nodes. The construction of such quadrature processes is related to quasi-orthogonal polynomials. Given a sequence {P n } n≥0 of monic orthogonal polynomials and a fixed integer k, we establish necessary and sufficient conditions so that the quasi-orthogonal polynomials {Q n } n≥0 defined by (forumala Presented). also constitute a sequence of orthogonal polynomials. Therefore we solve the inverse problem for linearly related orthogonal polynomials. The characterization turns out to be equivalent to some nice recurrence formulas for the coeffcients b i;n . We employ these results to establish explicit relations between various types of quadrature rules from the above relations. A number of illustrative examples are provided.en
dc.description.affiliationDepartamento de Matemática Aplicada UNESP-Univ Estadual Paulista
dc.description.affiliationDepartamento de Matemáticas Universidad Carlos III de Madrid
dc.description.affiliationInstituto de Ciencias Matemáticas (ICMAT)
dc.description.affiliationDepartment of Mathematics Faculty of Science Ankara University, Tandoğan
dc.description.affiliationUnespDepartamento de Matemática Aplicada UNESP-Univ Estadual Paulista
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipCenter for Biotechnology, Stony Brook University
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: CSF/PVE 107/2012
dc.description.sponsorshipIdCNPq: 305208/2015-2
dc.description.sponsorshipIdCNPq: 402939/2016-6
dc.format.extent6953-6977
dc.identifierhttp://dx.doi.org/10.2298/FIL1820953B
dc.identifier.citationFilomat, v. 32, n. 20, p. 6953-6977, 2018.
dc.identifier.doi10.2298/FIL1820953B
dc.identifier.issn0354-5180
dc.identifier.lattes8300322452622467
dc.identifier.orcid0000-0002-6823-4204
dc.identifier.scopus2-s2.0-85061358339
dc.identifier.urihttp://hdl.handle.net/11449/187340
dc.language.isoeng
dc.relation.ispartofFilomat
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectChristoffel numbers
dc.subjectGaussian quadrature formulas
dc.subjectInverse problems
dc.subjectOrthogonal polynomials
dc.subjectPositive quadrature formulas
dc.subjectQuasi-orthogonal polynomials
dc.titleOrthogonality of quasi-orthogonal polynomialsen
dc.typeArtigo
unesp.author.lattes8300322452622467[1]
unesp.author.orcid0000-0002-6823-4204[1]

Arquivos

Coleções