OSCILLATION AND NONOSCILLATION CRITERIA FOR IMPULSIVE DELAY DIFFERENTIAL EQUATIONS WITH PERRON INTEGRABLE COEFFICIENTS
dc.contributor.author | Silva, M. A. | |
dc.contributor.author | Federson, M. | |
dc.contributor.author | Gadotti, M. C. [UNESP] | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-03-01T20:46:14Z | |
dc.date.available | 2023-03-01T20:46:14Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | We present new criteria for the existence of oscillatory and nonoscillatory solutions of measure delay differential equations with impulses. We deal with the integral forms of the differential equations using the Perron and the Perron-Stieltjes integrals. Thus the functions involved can have many discontinuities and be of unbounded variation and yet we obtain good results which encompass those in the literature. Examples are given to illustrate the main results. | en |
dc.description.affiliation | Departamento de Matemática ICMC Universidade de São Paulo, SP | |
dc.description.affiliation | Departamento de Matemática IGCE Universidade Estadual Paulista | |
dc.description.affiliationUnesp | Departamento de Matemática IGCE Universidade Estadual Paulista | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2015/12489-0 | |
dc.description.sponsorshipId | CAPES: PROEX 9422567-D | |
dc.format.extent | 125-137 | |
dc.identifier.citation | Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, v. 29, n. 2, p. 125-137, 2022. | |
dc.identifier.issn | 1918-2538 | |
dc.identifier.issn | 1201-3390 | |
dc.identifier.scopus | 2-s2.0-85131089016 | |
dc.identifier.uri | http://hdl.handle.net/11449/241081 | |
dc.language.iso | eng | |
dc.relation.ispartof | Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis | |
dc.source | Scopus | |
dc.subject | delay differential equations | |
dc.subject | impulses | |
dc.subject | measure differential equations | |
dc.subject | nonoscillation | |
dc.subject | oscillation | |
dc.subject | Perron integral | |
dc.subject | Perron-Stieltjes integral | |
dc.title | OSCILLATION AND NONOSCILLATION CRITERIA FOR IMPULSIVE DELAY DIFFERENTIAL EQUATIONS WITH PERRON INTEGRABLE COEFFICIENTS | en |
dc.type | Artigo |