Imaged based identification of colombian timbers using the xylotron: A proof of concept international partnership

dc.contributor.authorArévalo, Rafael
dc.contributor.authorPulido R., Esperanza N.
dc.contributor.authorSolórzano G., Juan F.
dc.contributor.authorSoares, Richard
dc.contributor.authorRuffinatto, Flavio
dc.contributor.authorRavindran, Prabu
dc.contributor.authorWiedenhoeft, Alex C. [UNESP]
dc.contributor.institutionUniversity of Wisconsin
dc.contributor.institutionForest Products Laboratory
dc.contributor.institutionUniversidad Distrital Francisco Jose de Caldas
dc.contributor.institutionUniversity of Torino
dc.contributor.institutionPurdue University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionMississippi State University
dc.date.accessioned2022-04-28T19:29:49Z
dc.date.available2022-04-28T19:29:49Z
dc.date.issued2021-01-01
dc.description.abstractField deployable computer vision wood identification systems can be relevant in combating illegal logging in the real world. This work used 764 xylarium specimens from 84 taxa to develop an image data set to train a classifier and identify 14 commercial Colombian timbers. We took images of specimens from various xylaria outside Colombia, trained and evaluated an initial identification model and then collected additional images from a Colombian xylarium (BOFw) and incorporated these images to refine and produce a final model. The specimen classification accuracy of this final model was ~ 97%, which demonstrates that including local specimens can augment the accuracy and reliability of the XyloTron system. Our study demonstrates the first deployable computer vision model for wood identification in Colombia, which is developed on a timescale of months rather than years by leveraging on international cooperation. We conclude that field testing and advanced forensic and machine learning training are the next logical steps.en
dc.description.affiliationDepartment of Botany University of Wisconsin
dc.description.affiliationCenter for Wood Anatomy Research USDA Forest Service Forest Products Laboratory
dc.description.affiliationFacultad de Medio Ambiente y Recursos Naturales Universidad Distrital Francisco Jose de Caldas
dc.description.affiliationDISAFA University of Torino, Largo Paolo Braccini 2
dc.description.affiliationDepartment of Forestry and Natural Resources Purdue University
dc.description.affiliationDepartamento de Ciências Biolôgicas (Botânica) Universidade Estadual Paulista
dc.description.affiliationDepartment of Sustainable Bioproducts Mississippi State University
dc.description.affiliationUnespDepartamento de Ciências Biolôgicas (Botânica) Universidade Estadual Paulista
dc.format.extent5-16
dc.identifierhttp://dx.doi.org/10.14483/2256201X.16700
dc.identifier.citationColombia Forestal, v. 24, n. 1, p. 5-16, 2021.
dc.identifier.doi10.14483/2256201X.16700
dc.identifier.issn2256-201X
dc.identifier.issn0120-0739
dc.identifier.scopus2-s2.0-85097230568
dc.identifier.urihttp://hdl.handle.net/11449/221625
dc.language.isoeng
dc.relation.ispartofColombia Forestal
dc.sourceScopus
dc.subjectDeep learning
dc.subjectForensic wood anatomy
dc.subjectMachine Learning
dc.subjectTransfer learning
dc.subjectWood identification
dc.titleImaged based identification of colombian timbers using the xylotron: A proof of concept international partnershipen
dc.titleIdentificación de maderas colombianas utilizando el Xylotron: Prueba de concepto de una colaboración internacionales
dc.typeArtigo

Arquivos

Coleções