Modulatory effects of silibinin in cell behavior during osteogenic phenotype
Nenhuma Miniatura disponível
Data
2019-08-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Natural molecules, such as flavonoid, are very welcome strategies to modulate bone turnover. This prompted us to comprehend better the effect of silibinin on osteoblast metabolism, mainly considering intracellular pathways able to drive cell adhesion to differentiation. By exploring in vitro approaches, our data show a modulatory effect of the silibinin (200 μg/mL) on the osteoblast intracellular signaling, contributing with decisive pathways governing cell adhesion, differentiation, and further mineralization, recapitulating important stages of osteogenesis. Within the first 24 hours of adhesion (acute stage), osteoblasts respond to silibinin by rearranging their cytoskeleton and start mechanisms responsible to extracellular matrix (ECM) remodeling, which reach intense profile at 28 days of treatment (chronic stage) by favoring matrix metalloproteinases (MMPs-2, and -9) activities, concomitant to mineralizing phenotype. Importantly, silibinin seems to reprogram genes related to inflammatory landscape and significantly upmodulating osteoprotegerin (>25 fold-changes), signaling molecule involved with osteoclastogenesis. Altogether, our results show for the first time that silibinin drives in vitro osteoblast differentiation by requiring specific intracellular signaling. In conjunction, this molecular landscape contributes to understand the effect of silibinin on osteoblasts performance and open novel therapeutic possibilities to silibinin in bone disorders, such as osteoporosis.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Cellular Biochemistry, v. 120, n. 8, p. 13413-13425, 2019.