Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2024 a 5 de janeiro de 2025.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

 

Stress distribution on different bar materials in implant-retained palatal obturator

Nenhuma Miniatura disponível

Data

2020-10-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Implant-retained custom-milled framework enhances the stability of palatal obturator prostheses. Therefore, to evaluate the mechanical response of implant-retained obturator prostheses with bar-clip attachment and milled bars, in three different materials under two load incidences were simulated. A maxilla model which Type IIb maxillary defect received five external hexagon implants (4.1 x 10 mm). An implant-supported palatal obturator prosthesis was simulated in three different materials: polyetheretherketone (PEEK), titanium (Ti:90%, Al:6%, V:4%) and Co-Cr (Co:60.6%, Cr:31.5%, Mo:6%) alloys. The model was imported into the analysis software and divided into a mesh composed of nodes and tetrahedral elements. Each material was assumed isotropic, elastic and homogeneous and all contacts were considered ideal. The bone was fixed and the load was applied in two different regions for each material: at the palatal face (cingulum area) of the central incisors (100 N magnitude at 45°); and at the occlusal surface of the first left molar (150 N magnitude normal to the surface). The microstrain and von-Mises stress were selected as criteria for analysis. The posterior load showed a higher strain concentration in the posterior peri-implant tissue, near the load application side for cortical and cancellous bone, regardless the simulated material. The anterior load showed a lower strain concentration with reduced magnitude and more implants involving in the load dissipation. The stress peak was calculated during posterior loading, which 77.7 MPa in the prosthetic screws and 2,686 με microstrain in the cortical bone. For bone tissue and bar, the material stiffness was inversely proportional to the calculated microstrain and stress. However, for the prosthetic screws and implants the PEEK showed higher stress concentration than the other materials. PEEK showed a promising behavior for the bone tissue and for the integrity of the bar and bar-clip attachments. However, the stress concentration in the prosthetic screws may represent an increase in failure risk. The use of Co-Cr alloy can reduce the stress in the prosthetic screw; however, it increases the bone strain; while the Titanium showed an intermediate behavior.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

PLoS ONE, v. 15, n. 10 October, 2020.

Itens relacionados

Financiadores