Embedded real-time speed limit sign recognition using image processing and machine learning techniques

dc.contributor.authorGomes, Samuel L.
dc.contributor.authorReboucas, Elizangela de S.
dc.contributor.authorNeto, Edson Cavalcanti
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorAlbuquerque, Victor H. C. de
dc.contributor.authorReboucas Filho, Pedro P.
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.institutionInst Fed Fed Educ Ciencia & Tecnol Ceara IFCE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniv Fortaleza
dc.contributor.institutionUniv Porto
dc.date.accessioned2018-11-29T04:54:17Z
dc.date.available2018-11-29T04:54:17Z
dc.date.issued2017-12-01
dc.description.abstractThe number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87 mu s to recognize a sign, while kNN took 11,721 ls and SVM 12,595 ls. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.en
dc.description.affiliationInst Fed Fed Educ Ciencia & Tecnol Ceara IFCE, Lab Proc Digital Imagens & Simulacao Computac, Juazeiro Do Norte, Ceara, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil
dc.description.affiliationUniv Fortaleza, Programa Posgrad Informat Aplicada, Lab Bioinformat, Fortaleza, CE, Brazil
dc.description.affiliationUniv Porto, Fac Engn, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Dept Engn Mecan, Oporto, Portugal
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil
dc.description.sponsorshipInstituto Federal do Ceara (IFCE)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipPrograma Operacional Regional do Norte (NORTE2020) through Fundo Europeu de Desenvolvimento Regional (FEDER)
dc.description.sponsorshipIdInstituto Federal do Ceara (IFCE): PROINFRA/2013
dc.description.sponsorshipIdInstituto Federal do Ceara (IFCE): PROAPP/2014
dc.description.sponsorshipIdInstituto Federal do Ceara (IFCE): PROINFRA/2015
dc.description.sponsorshipIdCNPq: 470501/2013-8
dc.description.sponsorshipIdCNPq: 301928/2014-2
dc.description.sponsorshipId: NORTE-01-0145-FEDER-000022
dc.format.extentS573-S584
dc.identifierhttp://dx.doi.org/10.1007/s00521-016-2388-3
dc.identifier.citationNeural Computing & Applications. New York: Springer, v. 28, p. S573-S584, 2017.
dc.identifier.doi10.1007/s00521-016-2388-3
dc.identifier.fileWOS000417319700047.pdf
dc.identifier.issn0941-0643
dc.identifier.urihttp://hdl.handle.net/11449/165920
dc.identifier.wosWOS:000417319700047
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofNeural Computing & Applications
dc.relation.ispartofsjr0,700
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectCascade haar-like features
dc.subjectPattern recognition
dc.subjectComputer vision
dc.subjectAutomotive applications
dc.titleEmbedded real-time speed limit sign recognition using image processing and machine learning techniquesen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
unesp.campusUniversidade Estadual Paulista (Unesp), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000417319700047.pdf
Tamanho:
875.62 KB
Formato:
Adobe Portable Document Format
Descrição: