Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae)

Nenhuma Miniatura disponível

Data

2008-11-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Academic Press Inc. Elsevier B.V.

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The Neotropics possess the greatest freshwater fish diversity of the world, rendering the study of their evolutionary history extremely challenging. Loricariidae catfishes are one of the most diverse components of the Neotropical ichthyofauna and despite a long history of classification, major issues still need elucidation. Based on a nuclear gene, we present a robust phylogeny of two former loricariid subfamilies: Hypoptopomatinae and Neoplecostominae. Our results show that Neoplecostominae is nested within Hypoptopomatinae, and is the sister group to the former Otothyrini tribe. According to our results, supplemented by morphological observations, we erect two new subfamilies, the Otothyrinae and a new Hypoptopomatinae, and modify the Neoplecostominae by including the genus Pseudotocinclus. The uncovered evolutionary relationships allow a detailed analysis of their historical biogeography. We tested two Dispersal-Extinction-Cladogenesis models for inferring the distribution range evolution of the new subfamilies, and show that the model having no constrains performs better than a model constraining long-range dispersal. The Maximum Likelihood reconstructions of ancestral ranges showed a marked division between the Amazonian origin of the Hypoptopomatinae and the eastern coastal Brazil + Upper Parana origin of the Neoplecostominae and Otothyrinae. Markedly few instances of dispersal across the border separating the Amazon basin and the Parana-Paraguay + eastern coastal Brazil + Uruguay were reconstructed. This result is in clear contrast with the historical biogeography of many Neotropical fishes, including other Loricariidae. Part of the dispersal limitation may be explained by divergent ecological specialization: lowland rivers versus mountain streams habitats. Moreover, because most species of the new subfamilies are small, we hypothesize that body size-related effects might limit their dispersal, like predation and energetic cost to migration. Finally, morphological and anatomical features are presented that limit or, to the contrary, enhance dispersal capability in these small and fascinating catfishes. (C) 2008 Elsevier B.V. All rights reserved.

Descrição

Idioma

Inglês

Como citar

Molecular Phylogenetics and Evolution. San Diego: Academic Press Inc. Elsevier B.V., v. 49, n. 2, p. 606-617, 2008.

Itens relacionados