Numerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibers

dc.contributor.authorA. G. Bitencourt, Luís
dc.contributor.authorManzoli, Osvaldo L. [UNESP]
dc.contributor.authorBittencourt, Túlio N.
dc.contributor.authorVecchio, Frank J.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversity of Toronto
dc.date.accessioned2019-10-06T15:20:08Z
dc.date.available2019-10-06T15:20:08Z
dc.date.issued2019-03-01
dc.description.abstractThis work presents a novel numerical model based on the use of coupling finite elements to simulate the behavior of steel fiber reinforced concrete (SFRC) with a discrete and explicit representation of steel fibers. The material is described as a composite made up by three phases: concrete, discrete discontinuous fibers and fiber-matrix interface. The steel fibers are modeled using two-node finite elements (truss elements) with a one-dimensional elastoplastic constitutive model. They are positioned using an isotropic uniform random distribution, considering the wall effect of the mold. A non-rigid coupling procedure is proposed for modeling the complex nonlinear behavior of the fiber-matrix interface by adopting an appropriate constitutive damage model to describe the relation between the shear stress (adherence stress) and the relative sliding between the matrix and each fiber individually. An isotropic damage model including two independent scalar damage variables for describing the concrete behavior under tension and compression is considered. To increase the computability and robustness of the continuum damage models used to simulate matrix and interface behavior, an implicit-explicit integration scheme is used. Numerical examples involving a single fiber and a cloud of fibers are performed. Comparisons with experimental results demonstrate that the application of the numerical strategy for modeling the behavior of SFRC is highly promising and may constitute an important tool for better understanding the effects of the different aspects involved in the failure process of this material.en
dc.description.affiliationUniversity of São Paulo Av. Prof. Luciano Gualberto, Trav. 3 n. 380 - CEP - 05508-010
dc.description.affiliationSão Paulo State University - UNESP/Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.affiliationDepartment of Civil Engineering University of Toronto, 35 St. George St., M5S 1A4
dc.description.affiliationUnespSão Paulo State University - UNESP/Bauru, Av. Eng. Luiz Edmundo C. Coube 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2009/07451-2
dc.description.sponsorshipIdFAPESP: 2012/05430-0
dc.description.sponsorshipIdCNPq: 2016-5
dc.description.sponsorshipIdCNPq: 429552
dc.format.extent171-190
dc.identifierhttp://dx.doi.org/10.1016/j.ijsolstr.2018.09.028
dc.identifier.citationInternational Journal of Solids and Structures, v. 159, p. 171-190.
dc.identifier.doi10.1016/j.ijsolstr.2018.09.028
dc.identifier.issn0020-7683
dc.identifier.scopus2-s2.0-85054504392
dc.identifier.urihttp://hdl.handle.net/11449/186929
dc.language.isoeng
dc.relation.ispartofInternational Journal of Solids and Structures
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConcrete
dc.subjectCoupling finite element
dc.subjectCrack propagation
dc.subjectDamage constitutive model
dc.subjectImpl-Ex integration scheme
dc.subjectSteel fiber
dc.titleNumerical modeling of steel fiber reinforced concrete with a discrete and explicit representation of steel fibersen
dc.typeArtigo
unesp.author.orcid0000-0003-1396-3319[1]
unesp.author.orcid0000-0001-9004-7985[2]

Arquivos

Coleções