Bacterial infiltration and detorque at the implant abutment morse taper interface after masticatory simulation
Nenhuma Miniatura disponível
Data
2022-12-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
This study evaluated the bacterial infiltration and the detorque of indexed and non-indexed abutments of Morse taper implants (MTI) after mechanical cycling (MC). 40 MTI were distributed into four groups: IIA (indexed implant abutments); NIIA (non-indexed implant abutments); IIAMC (indexed implant abutments submitted to MC); NIIAMC (non-indexed implant abutments submitted to MC), which were carried out under one million 5 Hz frequency and 3 Bar pressure. After mechanical cycling, all groups were immersed in a bacterial solution in Brain Heart Infusion Agar. After detorque, the bacteria infiltration was evaluated by counting the colony-forming units. For the bacterial infiltration, analysis was applied to the Kruskal–Wallis test (p = 0.0176) followed by Dunn’s test. For the detorque analysis, the two-way repeated-measures ANOVA was applied, followed by the Tukey’s test (p < 0.0001). Bacteria infiltration was highly observed in NIIA (p = 0.0027) and were absent in IIAMC and NIIAMC. The detorque values for IIA (19.96Ncm ± 0.19Ncm), NIIA (19.90Ncm ± 0.83Ncm), and NIIAMC (19.51Ncm ± 0,69Ncm) were similar and remained close to the initial value, while IIAMC (55.2Ncm ± 2.36Ncm) showed an extremely significant torque value increase (p < 0.0001). The mechanical cycling resulted in mechanical sealing of the implant-abutment interface, preventing bacterial infiltration in the indexed and non-indexed specimens, and increasing the detorque strength in the group of indexed abutments.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Scientific Reports, v. 12, n. 1, 2022.