Petroleum well drilling monitoring through cutting image analysis and artificial intelligence techniques

dc.contributor.authorGuilherme, Ivan R. [UNESP]
dc.contributor.authorMarana, Aparecido N. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorChiachia, Giovani [UNESP]
dc.contributor.authorAfonso, Luis C. S. [UNESP]
dc.contributor.authorMiura, Kazuo
dc.contributor.authorFerreira, Marcus V. D.
dc.contributor.authorTorres, Francisco
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionBrazilian Petr PETROBRAS
dc.date.accessioned2013-09-30T18:50:30Z
dc.date.accessioned2014-05-20T14:16:21Z
dc.date.available2013-09-30T18:50:30Z
dc.date.available2014-05-20T14:16:21Z
dc.date.issued2011-02-01
dc.description.abstractPetroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.affiliationUNESP Univ Estadual Paulista, Dept Stat Appl Math & Computat, Rio Claro, Brazil
dc.description.affiliationBrazilian Petr PETROBRAS, Leopoldo Americo Miguez de Mello Res & Dev Ctr CE, Maceio, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Comp, Bauru, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Dept Stat Appl Math & Computat, Rio Claro, Brazil
dc.format.extent201-207
dc.identifierhttp://dx.doi.org/10.1016/j.engappai.2010.04.002
dc.identifier.citationEngineering Applications of Artificial Intelligence. Oxford: Pergamon-Elsevier B.V. Ltd, v. 24, n. 1, p. 201-207, 2011.
dc.identifier.doi10.1016/j.engappai.2010.04.002
dc.identifier.issn0952-1976
dc.identifier.urihttp://hdl.handle.net/11449/24925
dc.identifier.wosWOS:000287066400019
dc.language.isoeng
dc.publisherPergamon-Elsevier B.V. Ltd
dc.relation.ispartofEngineering Applications of Artificial Intelligence
dc.relation.ispartofjcr2.819
dc.relation.ispartofsjr0,874
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectPetroleum well drillingen
dc.subjectOptimum-path foresten
dc.subjectApplied artificial intelligenceen
dc.subjectSupport vector machinesen
dc.subjectArtificial Neural Networksen
dc.titlePetroleum well drilling monitoring through cutting image analysis and artificial intelligence techniquesen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderPergamon-Elsevier B.V. Ltd
unesp.author.lattes6027713750942689[2]
unesp.author.orcid0000-0003-4861-7061[2]
unesp.author.orcid0000-0002-6494-7514[3]
unesp.campusUniversidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: