Publicação:
Artificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambique

dc.contributor.authorTangune, Bartolomeu Félix
dc.contributor.authorRomán, E Rodrigo Máximo Sánchez [UNESP]
dc.contributor.institutionUniversidade Eduardo Mondlane
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:00:12Z
dc.date.available2020-12-12T02:00:12Z
dc.date.issued2019-01-01
dc.description.abstractPrecise estimation of reference evapotranspiration (ETo) is important for designing and managing irrigation systems. Methods of ETo estimation (11 empirical methods, 10 multiple regression models: RLM and 10 artificial neural networks: RNAs) were evaluated against Penman Monteith FAO 56 method using the following indexes: MBE (Mean Bias Error), RMSE (Root Mean Square Error) and R2, and RMSE was used as the main criterion of method selection. The significance of the methods was evaluated on the basis of the t test using data from 1985 to 2009. The meteorological data used (maximum temperature: Tmax, minimum temperature: Tmin and average temperature: T, relative air humidity, wind speed and solar brightness), from 1985 to 2009, are from the conventional meteorological station of the city of Inhambane, Mozambique. The results showed that the RLM4 model presented better performance (MBE = 0.01 mm.d-1; RMSE = 0.15 mm.d-1; R2 = 0.99). In the absence of global solar radiation, RLM6 (MBE =-0.01 mm.d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) and RLM10 (MBE = 0.01 mm. d-1; RMSE = 0.23 mm.d-1; R2 = 0.97) can be used, which require measurement of T, and Tmax and Tmin, respectively. These models were not statistically different from the standard method.en
dc.description.affiliationDepartamento de Engenharia Rural Escola Superior de Desenvolvimento Rural Universidade Eduardo Mondlane
dc.description.affiliationDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do Paraíso
dc.description.affiliationUnespDepartamento de Engenharia Rural Faculdade de Ciências Agronômicas Universidade Estadual Paulista (UNESP), Campus de Botucatu. Fazenda Experimental Lageado, Avenida Universitária, nº 3780, Altos do Paraíso
dc.format.extent802-816
dc.identifierhttp://dx.doi.org/10.15809/irriga.2019v24n4p802-816
dc.identifier.citationIRRIGA, v. 24, n. 4, p. 802-816, 2019.
dc.identifier.doi10.15809/irriga.2019v24n4p802-816
dc.identifier.issn1808-3765
dc.identifier.issn1413-7895
dc.identifier.scopus2-s2.0-85082141313
dc.identifier.urihttp://hdl.handle.net/11449/200198
dc.language.isopor
dc.relation.ispartofIRRIGA
dc.sourceScopus
dc.subjectEvapotranspiration
dc.subjectMultiple regression
dc.subjectNeural networks
dc.titleArtificial neural networks, regression and empirical methods for reference evapotranspiration modeling in Inhambane City, Mozambiqueen
dc.titleRedes neurais artificiais, regressão e métodos empíricos para a modelagem da evapotranspiração de referência na cidade de Inhambane, Moçambiquept
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Rural - FCApt

Arquivos