The local cyclicity problem: Melnikov method using Lyapunov constants
Nenhuma Miniatura disponível
Data
2022-05-19
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In 1991, Chicone and Jacobs showed the equivalence between the computation of the firstorder Taylor developments of the Lyapunov constants and the developments of the first Melnikov function near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six polynomial vector fields, soM(6) ≥ 44. Moreover, we extend this equivalence to the piecewise polynomial class. Finally, we prove that Mcp(4) ≥ 43 and Mcp(5) ≥ 65.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Proceedings of the Edinburgh Mathematical Society, v. 65, n. 2, p. 356-375, 2022.